更可怕的是大数据在跟踪
Widespread best practices for analytics don’t necessarily apply to gaming. Set your live games up for success with effective event tracking.
广泛的分析最佳实践不一定适用于游戏。 通过有效的事件跟踪,为实时游戏做好准备,以取得成功。
In order to make the most of your analytics and engagement tools, it’s essential to track the right events and collect the right data.
为了充分利用您的分析和参与工具,跟踪正确的事件并收集正确的数据至关重要。
Analyzing games requires a specific approach that ignores certain instincts and practices that work well in other media. This blog post provides the blueprint for setting up your tools to track events in a way that empowers your analysts and marketers in the pursuit of optimization.
分析游戏需要一种特定的方法,该方法应忽略某些在其他媒体上能很好发挥作用的直觉和做法。 这篇博客文章提供了设置蓝图,以设置您的工具来跟踪事件,从而使您的分析师和营销人员能够进行优化。
为什么谨慎会导致混乱 (Why caution leads to confusion)
Without games-specific analytics experience, developers often borrow techniques and methodologies from web analytics. In that field, it’s a good practice to track every click and page view.
没有游戏特定的分析经验,开发人员通常会从Web分析中借鉴技术和方法。 在该字段中,跟踪每次点击和页面浏览是一个很好的做法。
User flows
用户流
A game’s user interface (UI) creates a lot of headaches for developers. You want to ensure a clean, simple, and easy player experience. The natural instinct is to document how players are exploring the UI and moving through its various branches, but that creates a problematic dataset.
游戏的用户界面(UI)给开发人员带来很多麻烦。 您想确保干净,简单,轻松的播放器体验。 自然的本能是记录玩家如何浏览UI并遍历UI的各个分支,但这会创建有问题的数据集。
In games, there are many different ways that players might perform similar actions or tasks. Tracking them all would record a million different paths to the same result but yield nothing in terms of meaningful insights.
在游戏中,玩家可以通过许多不同的方式执行类似的动作或任务。 跟踪所有这些记录将记录获得相同结果的一百万条不同路径,但是就有意义的见解而言没有任何帮助。
In games with building mechanics, for instance, it really doesn’t matter how many times a player cycled through the same sub-menu and hovered over each material. All you actually want to know is what they eventually built after all the hesitation.
例如,在具有建筑力学的游戏中,玩家循环浏览相同的子菜单并悬停在每种材料上的次数实际上并不重要。 您真正想知道的是,经过犹豫之后,他们最终建造了什么。
Collecting and harvesting
收集与收获
It’s very common for developers to track certain individual actions when there is absolutely no need to do so. This is especially common (and especially problematic) in games that involve harvesting resources as a core gameplay element.
对于开发人员来说,绝对不需要这样做时,通常会跟踪某些单独的操作。 在涉及收获资源作为核心游戏元素的游戏中,这尤其常见(特别是有问题)。
At a glance, the logical way to track a player’s 126-coin harvesting spree is to send a data point for every coin earned. Tracking repetitive actions with this level of detail is completely unnecessary. Instead of weighing down your analysts with 126 individual events, you should wait until the harvesting is over and send one data point: “this player harvested ‘x’ coins over ‘y’ time.”
乍一看,跟踪玩家126枚硬币大礼包的逻辑方法是为每枚获得的硬币发送一个数据点。 完全不需要跟踪具有此类详细信息的重复操作。 您应该等到收获结束并发送一个数据点,然后再发送一个数据点,而不是用126个独立事件来压低分析师的精力:“这位玩家在'y'时间内收获了'x'个硬币。”
That approach doesn’t work for games. Tracking every action takes up a huge amount of storage, but, more importantly, it makes your data almost impossible to analyze. To demonstrate just how easy it is to create a catastrophically noisy dataset with millions of data points, let’s look at two examples of common analytics missteps.
这种方法不适用于游戏。 跟踪每个动作都会占用大量存储空间,但是更重要的是,它几乎使您的数据无法分析。 为了演示创建具有数百万个数据点的灾难性嘈杂数据集是多么容易,让我们看两个常见的分析失误示例。
骨料的重要性 (The importance of aggregates )
The key to good games analytics is being brave enough to pinpoint the important information and leave the rest out. By their nature, all games involve a huge degree of repetition. As such, tracking aggregates rather than individual actions is a very effective way of reducing the size and noise of your datasets:
优质游戏分析的关键在于足够勇敢地找出重要信息,而将其余信息排除在外。 从本质上讲,所有游戏都包含很大程度的重复。 因此,跟踪聚合而不是单个操作是减少数据集大小和噪声的一种非常有效的方法:
Instead of tracking all clicks inside the store, track the number of offers abandoned and transactions completed.
而不是跟踪商店内的所有点击,而是跟踪放弃的报价和已完成的交易的数量。
Instead of tracking every gunshot in an FPS, track the total number of hits and misses per mission.
而不是跟踪FPS中的所有枪声,而是跟踪每个任务的命中和未命中的总数。
Instead of tracking every tree chopped for wood, track the amount of wood harvested per session.
与其追踪每棵砍伐的树木,不如追踪每节砍伐的木材量。
您追踪的越多,越难 (The more you track, the harder it gets)
Unfortunately, you can’t just track everything and work it out afterwards. A cautious, ‘catch-all’ approach to event-tracking will get in the way of meaningful analysis and ultimately cap your game’s potential. Work out what you need to know, trust in aggregates, and have the confidence to discard the noise.
不幸的是,您不能仅仅跟踪所有内容并随后进行处理。 谨慎的,“包罗万象”的事件跟踪方法将妨碍有意义的分析,并最终限制游戏的潜力。 弄清您需要了解的内容,信任聚合,并有信心丢弃噪音。
什么是deltaDNA? (What is deltaDNA?)
Unity’s deltaDNA provides sophisticated player engagement tools for game-makers, powered by deep data analytics. With cross-platform and rich data capability, this end-to-end solution enables publishers and developers to better understand different player behaviors and create personalized experiences, targeting individual players in real-time. Get a full-feature 30-day free trial of deltaDNA to discover what targeted event-tracking can do for your game.
Unity的deltaDNA通过深层数据分析为游戏制作者提供了完善的玩家参与工具。 凭借跨平台和丰富的数据功能,此端到端解决方案使发布者和开发人员可以更好地了解不同的玩家行为并创建个性化的体验,从而实时针对各个玩家。 获得 deltaDNA 的全功能30天 免费试用, 以发现目标事件跟踪可以为您的游戏带来什么。
翻译自: https://blogs.unity3d.com/2020/07/03/a-better-way-to-track-events-in-your-game/
更可怕的是大数据在跟踪