-
Abstract
- 本文主要回顾了估计精度,模型管理方法,模型构建方法
-
1 Introduciton
- 目前适应值估计的常用方法:
- 多项式
- 高斯过程
- 前馈神经网络
- SVM
- 模型管理:估计模型和真实函数应该共同使用
- 如何提高估计模型的精度
- 模型的选择
- 数据的采样和权重
- 训练方法的选择
- 误差测量的选择
- 目前适应值估计的常用方法:
-
2 Motivations 使用估计模型的一些原因
- 适应值的计算十分费时
- 没有明确的计算模型
- 有环境噪声
- 函数是多模态的(波动较多,不够平滑)
- 在不改变全局最优值位置的情况下,让估计模型逼近原函数且平滑掉一些局部最优值。推荐:使用Gaussian kernel来实现coarse-to-fine地平滑化real function
-
3 估计的层次
- 问题估计problem approximation
- 用一个更简单的近似问题来替代原问题(e.g.实验变仿真,3D变2D)
- 函数估计functional approximation
- 构造一个显示表达式来替代原目标函数
- 进化估计evolutionary approximation
- “适应值继承”方法:用父代的适应值来评估子代的适应值
- “适应值模仿”方法:将所有个体聚类,只评估每类中代表性个体的适应值。再用它的适应值来评估其他个体的适应值
- 问题估计problem approximation
-
4 适应值估计模型的使用位置
- 4.1 估计模型可用于何处?
- 子种群之间个体的迁移
- 种群初始化;引导交叉;引导变异
- 由于初始化、交叉、变异本身是随机的,因此即便是用一个低精度模型来引导,也会比完全随机的要好。然而,适应值评估的减少可能不是很显著。
- 适应值评价【使用最多的地方】
- 文献[22]:通过计算出适应值估计的置信区间,以修改模型预测,以便鼓励算法探索未知区域
- 4.2 模型管理or进化控制
- 将估计模型用于适应值评价是最有效的。其中,主要有两点需要考虑:
- 首先,确保算法收敛到全局最优/近似全局最优
- 其次,尽可能减少计算代价
- 估计模型和real function需要一起使用——模型管理
- 实际函数用于评价部分个体or某些代的全部个体
- 由real function评价的个体称为controlled individual
- 由real function评价全部个体的代称为controlled generation
- 实际函数用于评价部分个体or某些代的全部个体
- 模型管理的分类:
- No evolution control
完全不使用real function,只用估计模型 - Fixed evolution control
- individual-based
每一代中,部分个体用估计模型评价,部分个体用real function评价:- best strategy:估计模型认为最好的个体,用real func重新评估
- random strategy:随机选择个体,用real func重新评估
- generation-based
- 方法一:当算法收敛到估计模型的时候,启用一次real funciton评估
- 方法二:固定几代中进行一次real funciton评估
- 缺点:由于估计模型的精确度会不断变化,事先固定的进化控制策略+模型误差会导致优化过程中的强烈震荡
- individual-based
- Adaptive evolution control
- 使用real function的频率应随着估计模型的精度而变化
- No evolution control
- 将估计模型用于适应值评价是最有效的。其中,主要有两点需要考虑:
- 4.1 估计模型可用于何处?
-
5 估计模型
- 5.1 多项式模型
- 5.2 高斯过程模型(Kriging model)
- 全局模型+局部偏移
- 优点:可以得到置信区间(估计值的精确度)
- 缺点:需要计算矩阵的转置。当维度较高,计算代价增加。
- 5.3 神经网络
- 常见:前馈多层感知器、径向基函数网络
- 5.4 SVM
- 优点:在学习过程中没有局部最小值,泛化误差不依赖于空间的维度
- 5.5 点评
模型的好坏没有固定的评判标准,因为需要依赖问题来判断。不过仍有一些通用的认识:- 先用简单的估计模型,看看能否拟合训练数据;如果不行,再改用更高复杂度的估计模型,例如高阶多项式or神经网络。
- 然而,如果输入空间是高维的且采样数据很有限,则推荐神经网络。
- 要估计二阶多项式模型的未知参数,至少需要(n + 1)×(n + 2)/ 2个数据样本
- 如果使用神经网络,尤其是多层感知器网络,需要考虑调节模型复杂度来防止过拟合
- 如果发现基于梯度下降的方法收敛缓慢,则可能还需要尝试其他更有效的训练方法[68]
- 在一些研究中,RBF网络发现具有良好的准确性和快速性[78,35]
-
6 数据采样技术
- 当在进化计算中使用估计模型时,离线和在线训练都要涉及到。
- 离线学习:估计模型在用于进化计算之前的训练过程(可以用蒙特卡洛方法得到数据)
- 在线学习:估计模型在优化过程中的更新
- 6.1 离线数据采样
- DoE
- OA
- CCD
- D-optimality
- Active learning 主动学习
- 基本思想:以优化某个目标函数的方式选择下一个采样数据的位置。 该目标函数可以是信息增益,熵减少或泛化误差。
- 优点:在不增加采样个数的情况下,提高神经网络的泛化能力
- DoE
- 6.2 在线数据采样
- 已经收集到数据之后,如何有效地选择一个数据的子集用来训练模型也很重要。
- Bagging & Boosting
- Active data selection
- Data weighting guided by evolution
- 当在进化计算中使用估计模型时,离线和在线训练都要涉及到。
-
7 讨论
- 缺乏理论证明
- 全局模型or局部模型?
- 局部模型更简单可行
- 在哪里使用估计模型?
- 用于迁移——不太有效
- 用于各种算子——对模型精度要求较低,但不确定能节省多少适应值计算代价
- 用于适应值评估——最有效地减少适应值计算次数,但是低质量模型可能会误导算法
- 未来研究方向:
- 设计更好的学习方法(来构建估计模型)
- 可能方式一:结合问题类型
- 可能方式二:结合先验知识
- 变输入维度时的估计模型
- 如何处理带有一般非线性约束的问题
- 管理不同层次的估计模型
- 设计更好的学习方法(来构建估计模型)
【文献阅读笔记】综述2005 《A Comprehensive Survey of Fitness Approximation in Evolutionary Computation》
最新推荐文章于 2022-03-02 10:42:42 发布
本文深入探讨了进化计算中适应值的估计方法,包括多项式、高斯过程、神经网络和SVM等模型。文章强调模型管理的重要性,如数据采样、模型选择和误差测量。此外,讨论了估计模型在种群初始化、交叉和变异等进化步骤中的应用,并提出了适应值评价中的模型管理策略,如固定和自适应进化控制。未来的研究方向包括设计更好的学习方法和处理非线性约束问题。
摘要由CSDN通过智能技术生成