DeepID2 "Deep Learning Face Representation by Joint Identification-Verification"

降低类内方差,提升类间方差一直是人脸识别的热点。论文将人脸识别和验证损失同时监督网络的训练,在LFW上获得99.15%的验证准确率。人脸识别是对输入图像分类,验证是判断一对图像是否为同一个ID。

分类信号具有丰富的ID相关信息,或者类间方差,但分类信号对于相同ID的约束较小,即不同的特征可能映射到相同的ID上。这时当特征推广到新任务或者新ID时表现就不好。因此,论文增加了人脸验证信号的监督,要求同一个ID的特征较近,不同的ID特征较远,降低类内方差。但只使用验证信号,在提取ID相关的特征上又不够好。因此,作者使用了两个监督。

分类信号的监督是最小化交叉熵损失,即,

验证信号是使用基于L2 norm的对比损失,让相同的id更相似,即一对样本的相似度作为损失的度量,

基于L1 norm的验证监督为:

其中d为余弦距离。

分类及验证信号通过超参数$\lambda$平衡,学习算法如下所示:

 

将DeepID2特征嵌入到人脸验证框架中,包括人脸对齐,特征提取,人脸验证。使用SDM算法检测21个人脸关键点,并对齐。随机裁切400个patch,通过200个深度网络提取400个160维的DeepID2特征,为降低冗余,使用前向贪心算法选择25个有效且互补的特征,得到4000维的特征使用PCA压缩。之后基于提取到的特征学习联合贝叶斯模型。

**实验结果**

在LFW数据集上测试人脸验证效果,LFW包含5749个id共13233个人脸图像。在CelebFaces+数据集上训练,DeepID2特征由CelebFaces+A训练,CelebFaces+B用来做特征选择及联合贝叶斯模型的学习。

监督信号权值的影响:

验证损失权值分别为0,0.05,无穷大时类内、类间方差的变化。长尾说明方差变化大,对于分类来说可以帮助区分不同id,但较大的雷内方差代表噪声,在验证损失的权值取0.05时分类可以保持较大的方差,验证的方差较小,这是验证就相对容易。权值取无穷大也不行,缺少了类间变化。

训练样本的增加对验证准确率提升有帮助:

使用不同数量patch的效果:

 

与其他方法对比的效果

 

深度高分辨率表示学习是一种用于视觉识别的技术,旨在从图像中学习到更高质量和更具表达力的特征表示。在传统的视觉识别任务中,如图像分类、目标检测和语义分割,传统的特征表示方法通常提取低级或中级特征,这些特征可能无法有效地捕捉到图像的复杂信息。而深度高分辨率表示学习通过多层神经网络的结构和大规模训练数据来学习更深层次、更富有语义的图像特征。 深度高分辨率表示学习方法通常包含以下几个关键步骤:首先,通过使用深度卷积神经网络(DCNN)架构来学习特征表示。DCNN是一种层次结构复杂、能够从原始像素数据中自动学习特征的神经网络。其次,利用大规模的标注数据进行训练,通过反向传播算法来更新网络的权重和偏置参数,从而最小化预测误差。最后,在训练过程中采用一些优化策略,如数据增强、正则化和优化器选择等,以提高网络的泛化能力和识别性能。 深度高分辨率表示学习在计算机视觉领域有着广泛的应用。一方面,它可以用于图像分类,通过学习到的高质量特征表示,可以在分类任务中获得更高的准确性和鲁棒性。另一方面,它也可以用于目标检测和语义分割任务,通过学习到的特征表示,可以更准确地定位和分割图像中的对象。此外,深度高分辨率表示学习还可以用于识别特定的物体、场景或人脸,从而应用于人脸识别、目标跟踪和智能安防等领域。 总之,深度高分辨率表示学习是一种能够有效提高视觉识别任务准确性和鲁棒性的技术。它通过学习到更深层次、更富有语义的图像特征表示,提供了更强大的图像分析和理解能力,为计算机视觉领域的各种应用提供了重要的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值