DeepID2 "Deep Learning Face Representation by Joint Identification-Verification"

降低类内方差,提升类间方差一直是人脸识别的热点。论文将人脸识别和验证损失同时监督网络的训练,在LFW上获得99.15%的验证准确率。人脸识别是对输入图像分类,验证是判断一对图像是否为同一个ID。

分类信号具有丰富的ID相关信息,或者类间方差,但分类信号对于相同ID的约束较小,即不同的特征可能映射到相同的ID上。这时当特征推广到新任务或者新ID时表现就不好。因此,论文增加了人脸验证信号的监督,要求同一个ID的特征较近,不同的ID特征较远,降低类内方差。但只使用验证信号,在提取ID相关的特征上又不够好。因此,作者使用了两个监督。

分类信号的监督是最小化交叉熵损失,即,

验证信号是使用基于L2 norm的对比损失,让相同的id更相似,即一对样本的相似度作为损失的度量,

基于L1 norm的验证监督为:

其中d为余弦距离。

分类及验证信号通过超参数$\lambda$平衡,学习算法如下所示:

 

将DeepID2特征嵌入到人脸验证框架中,包括人脸对齐,特征提取,人脸验证。使用SDM算法检测21个人脸关键点,并对齐。随机裁切400个patch,通过200个深度网络提取400个160维的DeepID2特征,为降低冗余,使用前向贪心算法选择25个有效且互补的特征,得到4000维的特征使用PCA压缩。之后基于提取到的特征学习联合贝叶斯模型。

**实验结果**

在LFW数据集上测试人脸验证效果,LFW包含5749个id共13233个人脸图像。在CelebFaces+数据集上训练,DeepID2特征由CelebFaces+A训练,CelebFaces+B用来做特征选择及联合贝叶斯模型的学习。

监督信号权值的影响:

验证损失权值分别为0,0.05,无穷大时类内、类间方差的变化。长尾说明方差变化大,对于分类来说可以帮助区分不同id,但较大的雷内方差代表噪声,在验证损失的权值取0.05时分类可以保持较大的方差,验证的方差较小,这是验证就相对容易。权值取无穷大也不行,缺少了类间变化。

训练样本的增加对验证准确率提升有帮助:

使用不同数量patch的效果:

 

与其他方法对比的效果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值