基于行人检测和视频理解,估计及跟踪人体关键点。首先在单帧或短视频剪辑估计关键点,然后使用轻量级网络生成关键点的估计。单帧的估计使用Mask-RCNN,3D Mask-RCNN。在PoseTrack上对比,MOTA为51.8%。
相关工作
单帧图像姿态估计:Mask R-CNN,DeeperCut,[4][33]
多帧姿态估计:PoseTrack[22],[18]
视频多目标跟踪:递归神经网络[32,38],[9]
两步法姿态跟踪
1.时空姿态估计
第一步是使用Mask R-CNN估计姿态。将2D卷积扩展到3D,3D卷积核的接收域分布在时空维度,模型的输入是T帧相邻的帧。扩展RPN,预测目标的候选区域。候选区域通过时空的RoIAlign操作,提取特定实例的特征。这些特征输入到头部用于姿态估计,3D Mask R-CNN的输出是tube集合的关键点估计,模型如下图所示:
基础网络
扩展ResNet到3D ResNet,center初始化替代mean初始化
Tube Proposal Network
给点基础网络的特征图,