CP.9线性相关,基,维数

线性相关与线性无关

线性无关

假设有一组向量 x 1 , x 2 , x 3 , . . . , x n x_1,x_2,x_3,...,x_n x1,x2,x3,...,xn如果他们的线性组合不存在结果为零的情况(除了系数全为0),那么他们之间是线性无关的 c 1 x 1 + c 2 x 2 + c 3 x 3 + . . . + c n x n ≠ 0 , c i ≠ 0 c_1x_1+c_2x_2+c_3x_3+...+c_nx_n \neq0,c_i \neq0 c1x1+c2x2+c3x3+...+cnxn=0,ci=0

线性相关

假设有一组向量 x 1 , x 2 , x 3 , . . . , x n x_1,x_2,x_3,...,x_n x1,x2,x3,...,xn如果他们的线性组合不存在结果为零的情况,那么他们之间是线性相关的,0向量和任何向量都是相关的。

一个奇怪的问题

2维空间里随意给3个向量,这3个向量是否线性相关?答案是:相关。
假设这3个向量是 [ u 1 u 2 ] [ v 1 v 2 ] [ w 1 w 2 ] \begin{bmatrix}u_1\\u_2\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix}\begin{bmatrix}w_1\\w_2\end{bmatrix} [u1u2][v1v2][w1w2]
他们是否相关的问题可以转换成方程 A X = 0 AX=0 AX=0是否存在非零解的问题。从描述中可以看出矩阵A的规模是 2 × 3 2\times3 2×3的, r ( A ) r(A) r(A)最大只能是2,而方程未知数有3个,存在自由变量,所以 A X = 0 AX=0 AX=0一定存在非零解。
综上,可以得出结论:将给定向量组成矩阵A,如果A的零空间中只有0向量,那么这些给定的向量是无关的,否则就相关。即当 r ( A ) = n r(A)=n r(A)=n时,线性无关; r ( A ) < n r(A)<n r(A)<n时,线性相关,关键点在于是否存在自由变量

向量 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn张成向量空间,意味着该空间包含所有的这些向量的所有线性组合。
如果考虑一个矩阵的列空间,从矩阵的各列入手,找到他们所有的线性组合,就等于找到了矩阵的列空间。问题在于,这些列是线性无关的吗?可能是,也可能不是,这取决于实际矩阵各列长什么样子。但我们最关心这样的向量组:既能生成向量空间,本身也是无关的,这意味着向量的数目要足够,否则无法生成空间,如果向量的数量太多,可能存在线性相关现象。因此提出“基”的概念,它包含的向量个数不多也不少。
基是指:一系列的向量 v 1 , v 2 , . . . v d v_1,v_2,...v_d v1,v2,...vd,他们线性无关,并且能够生成向量空间。
例如:一组三维空间的一组基 [ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] \begin{bmatrix}1\\0\\0\end{bmatrix}\begin{bmatrix}0\\1\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\end{bmatrix} 100 010 001
显然他们之间是无关的,形成的矩阵的零空间中只有0向量。
例2:一组三维空间的向量
[ 1 1 2 ] [ 2 2 5 ] \begin{bmatrix}1\\1\\2\end{bmatrix}\begin{bmatrix}2\\2\\5\end{bmatrix} 112 225
上述向量无法形成 R 3 R^3 R3向量空间,因为虽然他们线性无关,但是不足以生成 R 3 R^3 R3空间。再加上一个与前两个无关的向量就能生成一组基。
那么如何检验一组向量到底是不是基?只需要把他们组成矩阵,然后进行消元,看看是否存在自由列,没有自由列就是基。简言之,向量组成的矩阵要可逆。
那么例二中的两个向量,不能生成 R 3 R^3 R3空间,能不能生成什么空间?或者说,他们是何种空间的一组基?他们是 R 3 R^3 R3中的一个二维平面的基。
[ 1 1 2 ] [ 2 2 5 ] [ 3 3 8 ] \begin{bmatrix}1\\1\\2\end{bmatrix}\begin{bmatrix}2\\2\\5\end{bmatrix}\begin{bmatrix}3\\3\\8\end{bmatrix} 112 225 338
这样就形成了一组 R 3 R^3 R3的基了,很显然,基并不是唯一的,一个维度合适的可逆矩阵其列向量组就是对应空间的一组基。
虽然基有很多种,但是一组基中的向量个数是一定的,例如 R 3 R^3 R3的基,必须有3个列向量, R n R^n Rn的基必须有n个列向量。上述的3和n就是向量空间的维数
例: [ 1 2 3 1 1 1 2 1 1 2 3 1 ] \begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix} 111212323111 这些向量组,能生成矩阵的列空间吗?能。他们能形成 R 4 R^4 R4向量空间吗?不能,因为线性相关。其列空间的一组基可以是:第一列,第二列。也可以是第三列,第四列。也可以是第一列,第三列。这个例子又一次说明了,空间的基并不是唯一的。矩阵的秩是2,主列的数目也是2,矩阵A的列空间的维度也是2。

零空间的维度是多少?

A X = 0 AX=0 AX=0
[ 1 2 3 1 1 1 2 1 1 2 3 1 ] [ a b c d ] = 0 \begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix}\begin{bmatrix}a\\b\\c\\d\end{bmatrix}=0 111212323111 abcd =0
给出两个解:
[ − 1 − 1 1 0 ] [ − 1 0 0 1 ] \begin{bmatrix}-1\\-1\\1\\0\end{bmatrix}\begin{bmatrix}-1\\0\\0\\1\end{bmatrix} 1110 1001
这两个解,线性无关,并且其线性组合都在A的零空间内。
A的零空间维数是2,这个2指的是自由变量的数目。 d i m N ( A ) = n − r dimN(A)=n-r dimN(A)=nr

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值