目前中文Rerank 模型可选的不多,效果比较好的是bocha-semantic-reranker和bge-reranker,前者效果接近cohere可以直接通过API调用,后者开源需要自行部署。
1. 博查,bocha-semantic-reranker,可以直接API调用,免部署,免维护
Bocha Semantic Reranker是一种基于文本语义的排序模型(Rerank Model),它的主要用途是提升搜索结果的质量。在搜索推荐系统中,Bocha Semantic Reranker可以基于关键字搜索、向量搜索和混合搜索的初步排序结果的质量进行优化。具体来说,在初始的BM25排序或RRF排序之后,Bocha Semantic Reranker会从top-N候选结果中,利用语义信息对文档进行二次排序。这一过程中,模型会根据查询语句与文档内容之间的深层语义匹配情况,给出每个文档的排序结果和得分,从而改善用户的搜索体验。由于这种方法是对初步排序结果进行二次优化,因此被称为“Reranker”。
博查语义排序模型的优势:
Bocha Semantic Reranker 以 80M 参数实现接近于世界一线 280M、560M参数模型的排序效果。
- 由于模型参数比同类模型小3~6倍,推理速度更快、成本更低、性价比更高。
- 基于博查搜索引擎的技术积累,排序效果在搜索场景表现更好。
- 提供官方API,国内用户无需自行部署模型,可以直接通过调用,免去推理服务器和维护成本。
博查语义排序模型的评分原理:
博查语义排序模型的评分过程是基于查询语句(用户的输入问题)以及与之匹配的文档内容(通常是最高512个tokens的文本)进行的。评分的过程如下:
- 评估语义相关性:bocha-semantic-reranker会评估查询语句与每个文档的语义相关性,判断文档是否能够有效回答用户的查询或与查询意图高度匹配。
- 分配@BochaSemanticRerankScore:根据语义相关性,bocha-semantic-reranker为每个文档分配一个rerankScore,分数的范围从0到1。分数越高,表示文档与查询的语义相关性越强,越符合用户需求。通常,分数接近1表示高度相关,分数接近0表示不相关或低相关。
Score Range | Meaning |
---|---|
0.75 ~ 1 | 该文档高度相关并完全回答了问题,尽管可能包含与问题无关的额外文本。 |
0.5 ~ 0.75 | 该文档与问题是相关的,但缺乏使其完整的细节。 |
0.2 ~ 0.5 | 该文档与问题有一定的相关性;它部分回答了问题,或者只解决了问题的某些方面。 |
0.1 ~ 0.2 | 该文档与问题相关,但仅回答了一小部分。 |
0 ~ 0.1 | 该文档与问题无关紧要。 |
博查BEIR基准排序效果评分:
2. BAAI,bge-reranker-v2-m3,开源,需要自行部署
BGE(BAAI General Embedding)是智源研究院打造的通用语义向量模型。自2023年8月发布以来,智源团队陆续发布了中英文模型BGE v1.0、v1.5以及多语言模型 BGE-M3,截至目前,BGE 系列模型全球下载量超过 1500万,位居国内开源AI模型首位。BGE-M3模型一度跃居 Hugging Face 热门模型前三,其所属代码仓库FlagEmbedding位居Github热门项目前10;BGE-M3所带来的全新的通用检索模式也相继被Milvus、Vespa等主流向量数据库集成。
近日,智源团队再度推出新一代检索排序模型 BGE Re-Ranker v2.0,同时扩展向量模型BGE的“文本+图片”混合检索能力。
- BGE Re-Ranker v2.0 支持更多语言,更长文本长度,并在英文检索基准MTEB、中文检索基准C-MTEB、多语言检索基准MIRACL、LLaMA-Index、Evaluation等主流基准上取得了state-of-the-art的结果。
- BGE Re-Ranker v2.0 借助分层自蒸馏策略进一步优化推理效率,适度的开销即可换取显著的性能收益。
- BGE-v1.5、BGE-M3以融入visual token的方式进一步新增“文本+图片”混合检索能力,同时保持优异的文本检索性能。
BEIR基准排序效果评分: