A square pattern of size N x N (1 <= N <= 10) black and white square tiles is transformed into another square pattern. Write a program that will recognize the minimum transformation that has been applied to the original pattern given the following list of possible transformations:
- #1: 90 Degree Rotation: The pattern was rotated clockwise 90 degrees.
- #2: 180 Degree Rotation: The pattern was rotated clockwise 180 degrees.
- #3: 270 Degree Rotation: The pattern was rotated clockwise 270 degrees.
- #4: Reflection: The pattern was reflected horizontally (turned into a mirror image of itself by reflecting around a vertical line in the middle of the image).
- #5: Combination: The pattern was reflected horizontally and then subjected to one of the rotations (#1-#3).
- #6: No Change: The original pattern was not changed.
- #7: Invalid Transformation: The new pattern was not obtained by any of the above methods.
In the case that more than one transform could have been used, choose the one with the minimum number above.
PROGRAM NAME: transform
INPUT FORMAT
Line 1: | A single integer, N |
Line 2..N+1: | N lines of N characters (each either `@' or `-'); this is the square before transformation |
Line N+2..2*N+1: | N lines of N characters (each either `@' or `-'); this is the square after transformation |
SAMPLE INPUT (file transform.in)
3 @-@ --- @@- @-@ @-- --@
OUTPUT FORMAT
A single line containing the the number from 1 through 7 (described above) that categorizes the transformation required to change from the `before' representation to the `after' representation.SAMPLE OUTPUT (file transform.out)
1
题解:模拟题
写一个旋转90度函数,和一个投影函数 其他几种情况可运用这两个函数实现
旋转90°:目标矩阵 after[j][N-i-1]=原矩阵 before[i][j]
投影: 目标矩阵 after[i][N-j-1]=原矩阵 before[i][j]
ps:本人大三狗一枚,正在持续更新博客,文章里有任何问题,希望各位网友可以指出。若有疑问也可在评论区留言,我会尽快回复。希望能与各位网友互相学习,谢谢!
/*
ID: cxq_xia1
PROG: transform
LANG: C++
*/
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=11;
int N;
char before1[maxn][maxn],after1[maxn][maxn];
bool isSame(char before[maxn][maxn],char after[maxn][maxn])
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
if(before[i][j]!=after[i][j])
{
return false;
}
}
}
return true;
}
void clockwise_90(char before[maxn][maxn],char after[maxn][maxn])
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
after[j][N-i-1]=before[i][j];
}
}
}
void Reflection(char before[maxn][maxn],char after[maxn][maxn])
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
after[i][N-j-1]=before[i][j];
}
}
}
int solve()
{
char wise_90[maxn][maxn],wise_180[maxn][maxn],wise_270[maxn][maxn],reflect[maxn][maxn];
clockwise_90(before1,wise_90);
if(isSame(after1,wise_90))
return 1;
clockwise_90(wise_90,wise_180);
if(isSame(after1,wise_180))
return 2;
clockwise_90(wise_180,wise_270);
if(isSame(after1,wise_270))
return 3;
Reflection(before1,reflect);
if(isSame(after1,reflect))
return 4;
Reflection(after1,reflect);
if(isSame(wise_90,reflect)||isSame(wise_180,reflect)||isSame(wise_270,reflect))
return 5;
if(isSame(before1,after1))
return 6;
return 7;
}
int main()
{
freopen("transform.in","r",stdin);
freopen("transform.out","w",stdout);
while(cin >> N)
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cin >> before1[i][j];
}
}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cin >> after1[i][j];
}
}
cout <<solve()<<endl;
}
return 0;
}