SD-WebUI-SadTalker:让照片说话,数字人使用方法

本文介绍了如何在SD-WebUI中安装和使用西安交通大学开源的SadTalker插件,该插件能将图片和音频转化为动态的会说话或唱歌的视频。文章详细说明了硬件要求、安装步骤和注意事项,展示了AIGC技术在娱乐和教育领域的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

周三回老家办事儿,在火车上看见阿里发布了一款 AI 框架“EMO”,可以一张照片+音频,就能实现你说任何话或唱任何歌曲的动态视频。

看演示效果很不错,完胜之前的DreamTalk、Wav2Lip、SadTalker 等竞品。

结果今天一看github,嘎了使用不了。开源了个寂寞,真让人emo了。

回想了一下其实我的SD-WebUI 也可以实现照片说话,也就是SadTalker。看了一下有新的版本,不需要之前那么多模型了。那么让我们看看如何在SD-WebUI 中安装使用 SadTalker 吧。


什么是SadTalker:

SadTalker 是西安交通大学开源的一个基于Stable Diffusion的插件,它能够通过输入图片和音频文件生成会说话或唱歌的数字人视频。

项目地址:

https://github.com/OpenTalker/SadTalker

本地SadTalk插件安装包请看文末获取!

使用SadTalker,我们需要准备以下硬件条件:

  • 一台配备GPU的电脑主机:NVIDIA GeForce RTX 3060显卡(推荐12GB显存以上)、Intel i5 CPU(推荐 i5以上CPU)。

  • Stable Diffusion:这是SadTalker运行的基础平台,推荐使用秋叶的绘世一键包。

  • 安装ffmpeg软件:这是一个用于处理视频和音频文件的工具。安装后,需要在系统的环境变量Path中添加ffmpeg的bin路径。(资源可以在文末自取)


如何安装使用:

1. SadTalker插件安装:

首先,我们运行“A绘世启动器.exe”

在左边的“版本管理” 中找到“安装新扩展” 搜索 “SadTalker” 下载安装。

稍等片刻,弹出安装成功。

到此处,SadTalker插件本体已经安装成功了。

2. 模型安装:

我们来到官方提供的链接中下载模型

将上面4个模型文件下载到checkpoints文件夹下,需要自己创建一个checkpoints文件夹。

再将下载的gfpgan 文件放到SadTalker 目录下。

到此处,我们的模型安装完毕啦。(模型资源可以在文末自取)

3. 安装ffmpeg:

下载ffmpeg软件包,将其解压到C盘。

然后将其完整路径添加到系统环境变量,注意是bin目录。

然后我们可以“win+r” 输出“cmd”

调出控制台输入“ffmpeg -version” 出现详细信息就表示ffmpeg安装成功。

4. 运行SadTalker:

打开“A绘世启动器.exe” 启动器,一键启动WebUI。

等待安装完成,会自动运行Web。找到上面的“SadTalker”页签。

上传一张图片,和音频文件。

调整参数,点击“生成”。我后台爆显存了,关了面部增强又跑了一遍。

好了,到此我们已经完成了SadTalker在WebUI中的安装和使用,相关资源请看下方获取哦


总结:

通过上述步骤,我们成功地在SD-WebUI中安装并使用了SadTalker插件。尽管安装过程涉及多个步骤,但只要按照指导仔细操作,即使是没有太多技术背景的用户也能够顺利完成。SadTalker的实用性在于它能够将静态图片与音频结合,创造出仿佛人物在说话或唱歌的动态视频,这在娱乐、教育甚至广告领域都有广泛的应用前景。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>嗯,用户问的是SD能不能解决画面闪烁和口型偏差的问题。先回顾之前的对话,用户之前是想用Stable Diffusion制作数字人短视频,替代真人拍摄。现在他们可能遇到了这些问题,或者想了解SD在这方面的能力。 首先,画面闪烁问题。SD本身是生成单张图片的模型,直接生成视频的话,每帧之间可能不连贯,导致闪烁。我记得之前的回答提到过AnimateDiff插件,但效果可能不稳定。用户可能需要更详细的解决方案,比如结合其他工具或者插件,比如EbSynth或者使用关键帧插值技术。还要考虑ControlNet的应用,比如使用深度图或者姿势控制来保持一致性。 然后是口型偏差问题。SD本身不处理音频同步,需要依赖其他工具如Wav2Lip或SadTalker。这些工具的效果如何?Wav2Lip虽然能对口型,但精度可能不够,特别是对于复杂的面部动作。SadTalker可能效果更好,但需要更多配置。用户可能需要了解这些工具的具体操作步骤,或者有没有更优的替代方案。 另外,用户可能想知道有没有其他方法或者工具链可以结合SD来改善这些问题。比如结合3D模型或者使用其他AI工具进行后期处理。是否需要额外的硬件或者软件支持,比如使用DaVinci Resolve进行后期编辑,或者使用UE5的MetaHuman来增强3D效果。 还要考虑用户的技术背景。如果他们是非技术人员,可能需要更简单的解决方案,比如在线平台如HeyGen,而不是复杂的SD插件配置。但用户之前可能已经尝试过SD,所以需要详细的技术方案。需要分情况讨论,针对不同用户需求给出建议。 最后,总结SD目前的局限性,以及未来的改进方向。比如SDXL的进展,或者社区插件的更新是否能解决这些问题。同时,比较其他方案的优势,帮助用户权衡选择。</think>以下是关于Stable DiffusionSD)能否解决画面闪烁、口型偏差等问题的详细分析,结合技术原理与当前工具生态: --- ### **一、画面闪烁问题** #### **1. 根本原因** SD本质是**单帧图像生成模型**,其底层架构(Latent Diffusion Model)未设计时序连贯性,导致以下问题: - **帧间差异**:连续生成的图像在光照、细节(如发丝、衣物褶皱)上存在随机性。 - **动作突变**:即使通过ControlNet控制姿势,骨骼关键点间的过渡仍依赖插值算法,易出现肢体抖动。 #### **2. 当前解决方案** 通过工具链组合可**部分缓解**,但无法完全消除: - **AnimateDiff插件**: - 原理:在潜在空间注入运动模块(Motion Module),预测帧间运动轨迹。 - 效果:短片段(2-4秒)动作较连贯,但长视频仍会累积误差(如背景渐变失真)。 - 示例代码(WebUI扩展): ```python # 加载AnimateDiff模型 motion_module = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5") pipe = DiffusionPipeline.from_pretrained("SD1.5", motion_adapter=motion_module) ``` - **帧后处理优化**: - **EbSynth**:基于首帧+关键帧生成中间帧,平滑过渡(适合静态背景)。 - **光流法(如DAIN/RIFE)**:通过AI插帧提升流畅度(需额外GPU算力)。 #### **3. 局限性** - **物理规律违背**:SD无法理解重力、惯性等物理规则,快速动作(如转身)易出现肢体扭曲。 - **硬件要求**:生成1080p 30fps视频需至少12GB显存(RTX 3090级别)。 --- ### **二、口型同步问题** #### **1. 核心挑战** SD原生**不关联音频与视觉**,需依赖外部工具实现唇形同步: #### **2. 主流方案对比** | 工具 | 原理 | 精度 | 硬件需求 | 适用场景 | |---------------|--------------------------|------|----------------|------------------| | **Wav2Lip** | 语音频谱→唇形关键点 | ★★☆ | 低(4GB显存) | 简单口型(单词) | | **SadTalker** | 3D面部形变+表情迁移 | ★★★ | 中(8GB显存) | 中等复杂度语句 | | **Rhubarb Lip** | 基于音素的时间轴标注 | ★★★☆ | CPU即可 | 动画电影级精度 | #### **3. 操作流程示例(SD+SadTalker)** 1. **生成基础形象**: ```bash python scripts/txt2img.py --prompt "portrait of a young woman, photorealistic" --ddim_steps 50 ``` 2. **驱动口型**: ```python from sadtalker import SadTalker sad_talker = SadTalker() sad_talker.generate(input_audio="speech.wav", source_image="sd_output.png") ``` 3. **缺陷修复**: - 使用**GFPGAN**修复面部模糊。 - 用**After Effects**手动调整唇形关键帧。 #### **4. 技术瓶颈** - **音素-口型映射偏差**:中文复合元音(如“ü”)与英文发音机制不同,开源模型多基于英文数据集训练。 - **表情僵硬**:同步工具仅驱动嘴部区域,缺乏自然微表情(如挑眉、眨眼)。 --- ### **三、进阶优化方向** #### **1. 多模态模型融合** - **Audio2Face(NVIDIA)**: 企业级方案,通过AI直接生成面部动作编码(FACS),但需RTX A6000显卡+付费授权。 - **GeneFace++**: 学术开源项目,结合NeRF与语音驱动,支持高保真3D口型(GitHub代码库更新至2024年)。 #### **2. 数据增强** - **自定义训练**: - 采集真人发音视频,训练专用口型Lora模型。 - 数据集要求:至少500组音素-唇形对齐样本。 - **混合驱动**: 结合**OpenVoice**(语音克隆)与**3DMM**(3D形变模型),提升发音自然度。 #### **3. 硬件辅助** - **iPhone面部捕捉**: 利用ARKit录制真人面部数据,通过Blender重定向到SD生成的角色(需USDZ格式转换)。 - **Vicon动捕系统**: 专业级方案,成本高昂(10万美元级),但可实现电影级精度。 --- ### **四、总结** - **SD原生能力**:无法直接解决闪烁与口型问题,需依赖插件与外部工具链。 - **性价比方案**:AnimateDiff + SadTalker可满足短视频基本需求,但需接受10%-20%的瑕疵率。 - **未来展望**: - **SDXL-Turbo**:实时生成技术可能改善连贯性(2024年测试版已支持8fps生成)。 - **Stable Video Diffusion**:Meta官方视频模型仍在迭代,暂未开放商用。 **建议**:若项目对精度要求高,优先考虑UE5 MetaHuman或商用AI平台(如HeyGen),避免在SD调试中消耗过多时间。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值