循环神经网络(Recurrent Neural Network, RNN)与LSTM

深度学习神经网络算法发展顺序

RNN处理的是一种时间序列数据,它处理的问题中,前后数据间不是互相独立的,前一次决策会影响后一次决策

RNN可以保持序列的“记忆”信息,通过之前的信息决策当前的问题

看了上图对RNN根本没什么理解,展开看

 

 

上述描述了基本的RNN N-N网络结构,当然还有1-N,N-1,N-M等变体,这里不再一一叙述。

 

基本的RNN结构中,会保留过去很远的“记忆”,但距离很远的信息对当前决策影响几乎很小,所以LSTM被有针对性地提出了。

LSTM是长短时记忆神经网络,它是对RNN进行了优化,可以选择性地(按比例)接收、(按比例)关闭输入与输出信息。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值