解的存在唯一性定理与逐步逼近法
研究对象
d
y
d
x
=
f
(
x
,
y
)
(1)
\frac{dy}{dx}=f(x,y)\tag{1}
dxdy=f(x,y)(1)
这里
f
(
x
,
y
)
f(x,y)
f(x,y) 是在矩形域
R
:
∣
x
−
x
0
∣
≤
a
,
∣
y
−
y
0
∣
≤
b
R:|x-x_0|\le a,|y-y_0|\le b
R:∣x−x0∣≤a,∣y−y0∣≤b
上的连续函数
预备知识
利普希茨条件
函数 f ( x , y ) f(x,y) f(x,y) 称为在 R R R 上关于 y y y 满足利普希茨条件,如果存在常数 L > 0 L>0 L>0 使得不等式
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ⩽ L ∣ y 1 − y 2 ∣ |f(x,y_1)-f(x,y_2)|\leqslant L|y_1-y_2| ∣f(x,y1)−f(x,y2)∣⩽L∣y1−y2∣
对于所有 ( x , y 1 ) , ( x , y 2 ) ∈ R (x,y_1),(x,y_2)\in R (x,y1),(x,y2)∈R 都的成立, L L L 称为利普希茨常数
魏尔斯特拉斯判别法
设函数项级数 ∑ n = 1 ∞ u n ( x ) ( x ∈ D ) \sum\limits_{n=1}^\infty u_n(x)(x\in D) n=1∑∞un(x)(x∈D) 的每一项 u n ( x ) u_n(x) un(x) 满足
∣ u n ( x ) ∣ ⩽ a n , x ∈ D , |u_n(x)|\leqslant a_n,x\in D, ∣un(x)∣⩽an,x∈D,
并且数项级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^\infty a_n n=1∑∞an 收敛,则 ∑ n = 1 ∞ u n ( x ) \sum\limits_{n=1}^\infty u_n(x) n=1∑∞un(x) 在 D D D 上一致收敛
定理
定理1(解的存在唯一性定理)
如果
f
(
x
,
y
)
f(x,y)
f(x,y) 在矩形域
R
R
R 上连续且关于
y
y
y 满足利普希茨条件,则方程(1)存在唯一的解
y
=
φ
(
x
)
y=\varphi(x)
y=φ(x) ,定义于区间
∣
x
−
x
0
∣
≤
h
|x-x_0|\le h
∣x−x0∣≤h 上,连续且满足初值条件
φ
(
x
0
)
=
y
0
\varphi(x_0)=y_0
φ(x0)=y0
这里
h
=
min
(
a
,
b
M
)
h=\min\left(a,\frac{b}{M}\right)
h=min(a,Mb) ,
M
=
max
(
x
,
y
)
∈
R
∣
f
(
x
,
y
)
∣
M=\max\limits_{(x,y)\in R}|f(x,y)|
M=(x,y)∈Rmax∣f(x,y)∣
定理2
F
(
x
,
y
,
y
′
)
=
0
(2)
F(x,y,y')=0\tag{2}
F(x,y,y′)=0(2)
如果在点
(
x
0
,
y
0
,
y
0
′
)
(x_0,y_0,y_0')
(x0,y0,y0′) 的某一个领域中,
- F ( x , y , y ′ ) F(x,y,y') F(x,y,y′) 对所有变元 ( x , y , y ′ ) (x,y,y') (x,y,y′) 连续,且存在连续偏导数
- F ( x 0 , y 0 , y 0 ′ ) = 0 F(x_0,y_0,y_0')=0 F(x0,y0,y0′)=0
- ∂ F ( x 0 , y 0 , y 0 ′ ) ∂ y ′ ≠ 0 \frac{\partial F(x_0,y_0,y_0')}{\partial y'}\ne0 ∂y′∂F(x0,y0,y0′)=0
则方程存在唯一解
证明
定理一的证明
命题1 该微分方程等价于一积分方程
命题1: 设 y = φ ( x ) y=\varphi(x) y=φ(x) 是方程(1)的定义于区间 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上,满足初值条件
φ ( x 0 ) = y 0 (1.1.1) \varphi(x_0)=y_0\tag{1.1.1} φ(x0)=y0(1.1.1)
的解,则 y = φ ( x ) y=\varphi(x) y=φ(x) 是积分方程
y = y 0 + ∫ x 0 x f ( x , y ) d x , x 0 ⩽ x ⩽ x 0 + h (1.1.2) y=y_0+\int_{x_0}^x f(x,y)dx,x_0\leqslant x\leqslant x_0+h\tag{1.1.2} y=y0+∫x0xf(x,y)dx,x0⩽x⩽x0+h(1.1.2)
的定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上的连续解,反之亦然。
证明: 因为 y = φ ( x ) y=\varphi(x) y=φ(x) 是方程 (1) 的解,故有
d φ ( x ) d x = f ( x , φ ( x ) ) \frac{d\varphi(x)}{dx}=f(x,\varphi(x)) dxdφ(x)=f(x,φ(x))
两边从 x 0 x_0 x0 到 x x x 取定积分得到:
φ ( x ) − φ ( x 0 ) = ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)-\varphi(x_0)=\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h φ(x)−φ(x0)=∫x0xf(x,φ(x))dx,x0⩽x⩽x0+h
把 ( 1.1.1 ) (1.1.1) (1.1.1) 带入上式,得
φ ( x ) = y 0 = ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)=y_0=\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h φ(x)=y0=∫x0xf(x,φ(x))dx,x0⩽x⩽x0+h
因此, y = φ ( x ) y=\varphi(x) y=φ(x) 是 ( 1.1.2 ) (1.1.2) (1.1.2) 定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上的连续解
反之,如果 y = φ ( x ) y=\varphi(x) y=φ(x) 是 ( 1.1.2 ) (1.1.2) (1.1.2) 的连续解,则有
φ ( x ) = y 0 + ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h . (1.1.3) \varphi(x)=y_0+\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h.\tag{1.1.3} φ(x)=y0+∫x0xf(x,φ(x))dx,x0⩽x⩽x0+h.(1.1.3)
微分之,得到
d φ ( x ) d x = f ( x , φ ( x ) ) \frac{d\varphi(x)}{dx}=f(x,\varphi(x)) dxdφ(x)=f(x,φ(x))
又把 x = x 0 x=x_0 x=x0 带入 ( 1.1.3 ) (1.1.3) (1.1.3),得到
φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0
因此, y = φ ( x ) y=\varphi(x) y=φ(x) 是方程 ( 1 ) (1) (1) 定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上,且满足 ( 1.1.1 ) (1.1.1) (1.1.1) 的解
命题1证毕
命题2 皮卡逐步逼近函数序列于初值的距离小于一个常数
现在取
φ
0
(
x
)
=
0
\varphi_0(x)=_0
φ0(x)=0, 构造皮卡逐步逼近函数序列如下:
{
φ
0
(
x
)
=
y
0
φ
n
(
x
)
=
y
0
+
∫
x
0
x
f
(
ξ
,
φ
n
−
1
(
ξ
)
)
d
ξ
,
x
0
⩽
x
⩽
x
0
+
h
(1.2.1)
\left\{\begin{aligned} &\varphi_0(x)=y_0\\[10pt] &\varphi_n(x)=y_0+\int_{x_0}^xf(\xi,\varphi_{n-1}(\xi))d\xi,x_0\leqslant x\leqslant x_0+h\tag{1.2.1}\\ \end{aligned}\right.
⎩⎪⎪⎨⎪⎪⎧φ0(x)=y0φn(x)=y0+∫x0xf(ξ,φn−1(ξ))dξ,x0⩽x⩽x0+h(1.2.1)
( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,⋯)
命题2: 对于所有的 n n n, ( 1.2.1 ) (1.2.1) (1.2.1) 中函数 φ n ( x ) \varphi_n(x) φn(x) 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上有定义、连续且满足不等式
∣ φ n ( x ) − y 0 ∣ ⩽ b |\varphi_n(x)-y_0|\leqslant b ∣φn(x)−y0∣⩽b
证明: 当 n = 1 n=1 n=1 时, φ 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , y 0 ) d ξ , \varphi_1(x)=y_0+\int_{x_0}^xf(\xi,y_0)d\xi, φ1(x)=y0+∫x0xf(ξ,y0)dξ, 显然 φ 1 \varphi_1 φ1 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上有定义、连续,且有:
∣ φ 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , y 0 ) d ξ ∣ ⩽ ∫ x 0 x ∣ f ( ξ , y 0 ) ∣ d ξ ⩽ M ( x − x 0 ) ⩽ M h ⩽ b \begin{aligned} |\varphi_1(x)-y_0|&=|\int_{x_0}^xf(\xi,y_0)d\xi|\\ &\leqslant\int_{x_0}^x|f(\xi,y_0)|d\xi\\ &\leqslant M(x-x_0)\leqslant Mh\leqslant b \end{aligned} ∣φ1(x)−y0∣=∣∫x0xf(ξ,y0)dξ∣⩽∫x0x∣f(ξ,y0)∣dξ⩽M(x−x0)⩽Mh⩽b
即命题2当 n = 1 n=1 n=1 时成立.现在我们用数学归纳法证明对于任何正整数 n n n,命题2都成立。为此,设命题2当 n = k n=k n=k 时成立,也即 φ k \varphi_k φk 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上有定义、连续且满足不等式
∣ φ k ( x ) − y 0 ∣ ⩽ b |\varphi_k(x) -y_0|\leqslant b ∣φk(x)−y0∣⩽b
这时
φ k + 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ \varphi_{k+1}(x)=y_0+\int_{x_0}^xf(\xi,\varphi_k(\xi))d\xi φk+1(x)=y0+∫x0xf(ξ,φk(ξ))dξ
由假设,命题2当 n = k n=k n=k 时成立,知道 φ k + 1 ( x ) \varphi_{k+1}(x) φk+1(x) 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 有定理、连续且有:
∣ φ k + 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ k ( ξ ) ) d ξ ∣ ⩽ M ( x − x 0 ) ⩽ M h ⩽ b \begin{aligned} |\varphi_{k+1}(x)-y_0|&=|\int_{x_0}^xf(\xi,\varphi_k(\xi))d\xi|\\ &\leqslant \int_{x_0}^x|f(\xi,\varphi_k(\xi))d\xi|\\ &\leqslant M(x-x_0)\leqslant Mh\leqslant b \end{aligned} ∣φk+1(x)−y0∣=∣∫x0xf(ξ,φk(ξ))dξ∣⩽∫x0x∣f(ξ,φk(ξ))dξ∣⩽M(x−x0)⩽Mh⩽b
即命题2当 n = k + 1 n=k+1 n=k+1 时也成立.由数学归纳法得知命题2对所有 n n n 均成立.定理2.1证毕。
命题3:函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上是一致连续的.
证明: 我们考虑级数
φ 0 ( x ) + ∑ k = 1 ∞ [ φ k ( x ) − φ k − 1 ( x ) ] , x 0 ⩽ x ⩽ x 0 + h (1.3.1) \varphi_0(x)+\sum_{k=1}^\infty[\varphi_k(x)-\varphi_{k-1}(x)],x_0\leqslant x\leqslant x_0+h\tag{1.3.1} φ0(x)+k=1∑∞[φk(x)−φk−1(x)],x0⩽x⩽x0+h(1.3.1)
它的部分和为 φ n ( x ) \varphi_{n}(x) φn(x)
因此,要证明函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上一致收敛,只需证明级数 ( 1.3.1 ) (1.3.1) (1.3.1) 在 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 上一致收敛.为此,我们进行如下的估计,由 ( 1.2.1 ) (1.2.1) (1.2.1) 有:
∣ φ 1 ( x ) − φ 0 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 0 ( ξ ) ) ∣ d ξ ⩽ M ( x − x 0 ) (1.3.2) |\varphi_1(x)-\varphi_0(x)|\leqslant\int_{x_0}^x|f(\xi,\varphi_0(\xi))|d\xi\leqslant M(x-x_0)\tag{1.3.2} ∣φ1(x)−φ0(x)∣⩽∫x0x∣f(ξ,φ0(ξ))∣dξ⩽M(x−x0)(1.3.2)
及
∣ φ 2 ( x ) − φ 1 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 1 ( ξ ) ) − f ( ξ , φ 0 ( ξ ) ) ∣ d ξ |\varphi_2(x)-\varphi_1(x)|\leqslant\int_{x_0}^x|f(\xi,\varphi_1(\xi))-f(\xi,\varphi_0(\xi))|d\xi ∣φ2(x)−φ1(x)∣⩽∫x0x∣f(ξ,φ1(ξ))−f(ξ,φ0(ξ))∣dξ
利用利普希茨条件及 ( 1.3.2 ) (1.3.2) (1.3.2),得到
∣ φ 2 ( x ) − φ 1 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 1 ( ξ ) ) − f ( ξ , φ 0 ( ξ ) ) ∣ d ξ ⩽ L ∫ x 0 x ∣ φ 1 ( ξ ) − φ 0 ( ξ ) ∣ d ξ ⩽ L ∫ x 0 x M ( ξ − x 0 ) d ξ = M L 2 ! ( x − x 0 ) 2 \begin{aligned} |\varphi_2(x)-\varphi_1(x)|&\leqslant\int_{x_0}^x|f(\xi,\varphi_1(\xi))-f(\xi,\varphi_0(\xi))|d\xi\\ &\leqslant L\int_{x_0}^x|\varphi_1(\xi)-\varphi_0(\xi)|d\xi\\ &\leqslant L\int_{x_0}^xM(\xi-x_0)d\xi=\frac{ML}{2!}(x-x_0)^2 \end{aligned} ∣φ2(x)−φ1(x)∣⩽∫x0x∣f(ξ,φ1(ξ))−f(ξ,φ0(ξ))∣dξ⩽L∫x0x∣φ1(ξ)−φ0(ξ)∣dξ⩽L∫x0xM(ξ−x0)dξ=2!ML(x−x0)2
设对于正整数 n n n,不等式
∣ φ n ( x ) − φ n − 1 ( x ) ∣ ⩽ M L n − 1 n ! ( x − x 0 ) n |\varphi_n(x)-\varphi_{n-1}(x)|\leqslant\frac{ML^{n-1}}{n!}(x-x_0)^n ∣φn(x)−φn−1(x)∣⩽n!MLn−1(x−x0)n
则由利普希茨条件,当 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0⩽x⩽x0+h 时,有
∣ φ n + 1 ( x ) − φ n ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ n ( x ) ) − f ( ξ , φ n − 1 ( x ) ) ∣ d ξ ⩽ ∫ x 0 x L ∣ φ n ( x ) − φ n − 1 ( x ) ∣ d ξ ⩽ M L n n ! ∫ x 0 x ( x − x 0 ) n d ξ = M L n ( n + 1 ) ! ( x − x 0 ) n + 1 \begin{aligned} |\varphi_{n+1}(x)-\varphi_n(x)|&\leqslant\int_{x_0}^x|f(\xi,\varphi_n(x))-f(\xi,\varphi_{n-1}(x))|d\xi\\ &\leqslant\int_{x_0}^xL|\varphi_n(x)-\varphi_{n-1}(x)|d\xi\\ &\leqslant \frac{ML^n}{n!}\int_{x_0}^x(x-x_0)^nd\xi\\ &=\frac{ML^n}{(n+1)!}(x-x_0)^{n+1} \end{aligned} ∣φn+1(x)−φn(x)∣⩽∫x0x∣f(ξ,φn(x))−f(ξ,φn−1(x))∣dξ⩽∫x0xL∣φn(x)−φn−1(x)∣dξ⩽n!MLn∫x0x(x−x0)ndξ=(n+1)!MLn(x−x0)n+1
于是,由数学归纳法得知,对于所有的正整数 k k k,有如下的估计: