解的存在唯一性定理与逐步逼近法

研究对象

d y d x = f ( x , y ) (1) \frac{dy}{dx}=f(x,y)\tag{1} dxdy=f(x,y)(1)
这里 f ( x , y ) f(x,y) f(x,y) 是在矩形域
R : ∣ x − x 0 ∣ ≤ a , ∣ y − y 0 ∣ ≤ b R:|x-x_0|\le a,|y-y_0|\le b R:xx0a,yy0b
上的连续函数


预备知识

利普希茨条件

函数 f ( x , y ) f(x,y) f(x,y) 称为在 R R R 上关于 y y y 满足利普希茨条件,如果存在常数 L > 0 L>0 L>0 使得不等式

∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ⩽ L ∣ y 1 − y 2 ∣ |f(x,y_1)-f(x,y_2)|\leqslant L|y_1-y_2| f(x,y1)f(x,y2)Ly1y2

对于所有 ( x , y 1 ) , ( x , y 2 ) ∈ R (x,y_1),(x,y_2)\in R (x,y1),(x,y2)R 都的成立, L L L 称为利普希茨常数


魏尔斯特拉斯判别法

设函数项级数 ∑ n = 1 ∞ u n ( x ) ( x ∈ D ) \sum\limits_{n=1}^\infty u_n(x)(x\in D) n=1un(x)(xD) 的每一项 u n ( x ) u_n(x) un(x) 满足

∣ u n ( x ) ∣ ⩽ a n , x ∈ D , |u_n(x)|\leqslant a_n,x\in D, un(x)an,xD,

并且数项级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^\infty a_n n=1an 收敛,则 ∑ n = 1 ∞ u n ( x ) \sum\limits_{n=1}^\infty u_n(x) n=1un(x) D D D 上一致收敛

定理

定理1(解的存在唯一性定理)

如果 f ( x , y ) f(x,y) f(x,y) 在矩形域 R R R 上连续且关于 y y y 满足利普希茨条件,则方程(1)存在唯一的解 y = φ ( x ) y=\varphi(x) y=φ(x) ,定义于区间 ∣ x − x 0 ∣ ≤ h |x-x_0|\le h xx0h 上,连续且满足初值条件
φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0
这里 h = min ⁡ ( a , b M ) h=\min\left(a,\frac{b}{M}\right) h=min(a,Mb) M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ M=\max\limits_{(x,y)\in R}|f(x,y)| M=(x,y)Rmaxf(x,y)


定理2

F ( x , y , y ′ ) = 0 (2) F(x,y,y')=0\tag{2} F(x,y,y)=0(2)
如果在点 ( x 0 , y 0 , y 0 ′ ) (x_0,y_0,y_0') (x0,y0,y0) 的某一个领域中,

  1. F ( x , y , y ′ ) F(x,y,y') F(x,y,y) 对所有变元 ( x , y , y ′ ) (x,y,y') (x,y,y) 连续,且存在连续偏导数
  2. F ( x 0 , y 0 , y 0 ′ ) = 0 F(x_0,y_0,y_0')=0 F(x0,y0,y0)=0
  3. ∂ F ( x 0 , y 0 , y 0 ′ ) ∂ y ′ ≠ 0 \frac{\partial F(x_0,y_0,y_0')}{\partial y'}\ne0 yF(x0,y0,y0)=0

则方程存在唯一解


证明

定理一的证明

命题1 该微分方程等价于一积分方程

命题1: y = φ ( x ) y=\varphi(x) y=φ(x) 是方程(1)的定义于区间 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上,满足初值条件

φ ( x 0 ) = y 0 (1.1.1) \varphi(x_0)=y_0\tag{1.1.1} φ(x0)=y0(1.1.1)

的解,则 y = φ ( x ) y=\varphi(x) y=φ(x) 是积分方程

y = y 0 + ∫ x 0 x f ( x , y ) d x , x 0 ⩽ x ⩽ x 0 + h (1.1.2) y=y_0+\int_{x_0}^x f(x,y)dx,x_0\leqslant x\leqslant x_0+h\tag{1.1.2} y=y0+x0xf(x,y)dx,x0xx0+h(1.1.2)

的定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上的连续解,反之亦然。

证明: 因为 y = φ ( x ) y=\varphi(x) y=φ(x) 是方程 (1) 的解,故有

d φ ( x ) d x = f ( x , φ ( x ) ) \frac{d\varphi(x)}{dx}=f(x,\varphi(x)) dxdφ(x)=f(x,φ(x))

两边从 x 0 x_0 x0 x x x 取定积分得到:

φ ( x ) − φ ( x 0 ) = ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)-\varphi(x_0)=\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h φ(x)φ(x0)=x0xf(x,φ(x))dx,x0xx0+h

( 1.1.1 ) (1.1.1) (1.1.1) 带入上式,得

φ ( x ) = y 0 = ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)=y_0=\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h φ(x)=y0=x0xf(x,φ(x))dx,x0xx0+h

因此, y = φ ( x ) y=\varphi(x) y=φ(x) ( 1.1.2 ) (1.1.2) (1.1.2) 定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上的连续解

反之,如果 y = φ ( x ) y=\varphi(x) y=φ(x) ( 1.1.2 ) (1.1.2) (1.1.2) 的连续解,则有

φ ( x ) = y 0 + ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h . (1.1.3) \varphi(x)=y_0+\int_{x_0}^xf(x,\varphi(x))dx,x_0\leqslant x\leqslant x_0+h.\tag{1.1.3} φ(x)=y0+x0xf(x,φ(x))dx,x0xx0+h.(1.1.3)

微分之,得到

d φ ( x ) d x = f ( x , φ ( x ) ) \frac{d\varphi(x)}{dx}=f(x,\varphi(x)) dxdφ(x)=f(x,φ(x))

又把 x = x 0 x=x_0 x=x0 带入 ( 1.1.3 ) (1.1.3) (1.1.3),得到

φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0

因此, y = φ ( x ) y=\varphi(x) y=φ(x) 是方程 ( 1 ) (1) (1) 定义于 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上,且满足 ( 1.1.1 ) (1.1.1) (1.1.1) 的解

命题1证毕


命题2 皮卡逐步逼近函数序列于初值的距离小于一个常数

现在取 φ 0 ( x ) = 0 \varphi_0(x)=_0 φ0(x)=0, 构造皮卡逐步逼近函数序列如下:
{ φ 0 ( x ) = y 0 φ n ( x ) = y 0 + ∫ x 0 x f ( ξ , φ n − 1 ( ξ ) ) d ξ , x 0 ⩽ x ⩽ x 0 + h (1.2.1) \left\{\begin{aligned} &\varphi_0(x)=y_0\\[10pt] &\varphi_n(x)=y_0+\int_{x_0}^xf(\xi,\varphi_{n-1}(\xi))d\xi,x_0\leqslant x\leqslant x_0+h\tag{1.2.1}\\ \end{aligned}\right. φ0(x)=y0φn(x)=y0+x0xf(ξ,φn1(ξ))dξ,x0xx0+h(1.2.1)

( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,)

命题2: 对于所有的 n n n, ( 1.2.1 ) (1.2.1) (1.2.1) 中函数 φ n ( x ) \varphi_n(x) φn(x) x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上有定义、连续且满足不等式

∣ φ n ( x ) − y 0 ∣ ⩽ b |\varphi_n(x)-y_0|\leqslant b φn(x)y0b

证明: n = 1 n=1 n=1 时, φ 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , y 0 ) d ξ , \varphi_1(x)=y_0+\int_{x_0}^xf(\xi,y_0)d\xi, φ1(x)=y0+x0xf(ξ,y0)dξ, 显然 φ 1 \varphi_1 φ1 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上有定义、连续,且有:

∣ φ 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , y 0 ) d ξ ∣ ⩽ ∫ x 0 x ∣ f ( ξ , y 0 ) ∣ d ξ ⩽ M ( x − x 0 ) ⩽ M h ⩽ b \begin{aligned} |\varphi_1(x)-y_0|&=|\int_{x_0}^xf(\xi,y_0)d\xi|\\ &\leqslant\int_{x_0}^x|f(\xi,y_0)|d\xi\\ &\leqslant M(x-x_0)\leqslant Mh\leqslant b \end{aligned} φ1(x)y0=x0xf(ξ,y0)dξx0xf(ξ,y0)dξM(xx0)Mhb

即命题2当 n = 1 n=1 n=1 时成立.现在我们用数学归纳法证明对于任何正整数 n n n,命题2都成立。为此,设命题2当 n = k n=k n=k 时成立,也即 φ k \varphi_k φk x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上有定义、连续且满足不等式

∣ φ k ( x ) − y 0 ∣ ⩽ b |\varphi_k(x) -y_0|\leqslant b φk(x)y0b

这时

φ k + 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ \varphi_{k+1}(x)=y_0+\int_{x_0}^xf(\xi,\varphi_k(\xi))d\xi φk+1(x)=y0+x0xf(ξ,φk(ξ))dξ

由假设,命题2当 n = k n=k n=k 时成立,知道 φ k + 1 ( x ) \varphi_{k+1}(x) φk+1(x) x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 有定理、连续且有:

∣ φ k + 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ k ( ξ ) ) d ξ ∣ ⩽ M ( x − x 0 ) ⩽ M h ⩽ b \begin{aligned} |\varphi_{k+1}(x)-y_0|&=|\int_{x_0}^xf(\xi,\varphi_k(\xi))d\xi|\\ &\leqslant \int_{x_0}^x|f(\xi,\varphi_k(\xi))d\xi|\\ &\leqslant M(x-x_0)\leqslant Mh\leqslant b \end{aligned} φk+1(x)y0=x0xf(ξ,φk(ξ))dξx0xf(ξ,φk(ξ))dξM(xx0)Mhb

即命题2当 n = k + 1 n=k+1 n=k+1 时也成立.由数学归纳法得知命题2对所有 n n n 均成立.定理2.1证毕。


命题3:函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上是一致连续的.

证明: 我们考虑级数

φ 0 ( x ) + ∑ k = 1 ∞ [ φ k ( x ) − φ k − 1 ( x ) ] , x 0 ⩽ x ⩽ x 0 + h (1.3.1) \varphi_0(x)+\sum_{k=1}^\infty[\varphi_k(x)-\varphi_{k-1}(x)],x_0\leqslant x\leqslant x_0+h\tag{1.3.1} φ0(x)+k=1[φk(x)φk1(x)],x0xx0+h(1.3.1)

它的部分和为 φ n ( x ) \varphi_{n}(x) φn(x)

因此,要证明函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上一致收敛,只需证明级数 ( 1.3.1 ) (1.3.1) (1.3.1) x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 上一致收敛.为此,我们进行如下的估计,由 ( 1.2.1 ) (1.2.1) (1.2.1) 有:

∣ φ 1 ( x ) − φ 0 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 0 ( ξ ) ) ∣ d ξ ⩽ M ( x − x 0 ) (1.3.2) |\varphi_1(x)-\varphi_0(x)|\leqslant\int_{x_0}^x|f(\xi,\varphi_0(\xi))|d\xi\leqslant M(x-x_0)\tag{1.3.2} φ1(x)φ0(x)x0xf(ξ,φ0(ξ))dξM(xx0)(1.3.2)

∣ φ 2 ( x ) − φ 1 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 1 ( ξ ) ) − f ( ξ , φ 0 ( ξ ) ) ∣ d ξ |\varphi_2(x)-\varphi_1(x)|\leqslant\int_{x_0}^x|f(\xi,\varphi_1(\xi))-f(\xi,\varphi_0(\xi))|d\xi φ2(x)φ1(x)x0xf(ξ,φ1(ξ))f(ξ,φ0(ξ))dξ

利用利普希茨条件及 ( 1.3.2 ) (1.3.2) (1.3.2),得到

∣ φ 2 ( x ) − φ 1 ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ 1 ( ξ ) ) − f ( ξ , φ 0 ( ξ ) ) ∣ d ξ ⩽ L ∫ x 0 x ∣ φ 1 ( ξ ) − φ 0 ( ξ ) ∣ d ξ ⩽ L ∫ x 0 x M ( ξ − x 0 ) d ξ = M L 2 ! ( x − x 0 ) 2 \begin{aligned} |\varphi_2(x)-\varphi_1(x)|&\leqslant\int_{x_0}^x|f(\xi,\varphi_1(\xi))-f(\xi,\varphi_0(\xi))|d\xi\\ &\leqslant L\int_{x_0}^x|\varphi_1(\xi)-\varphi_0(\xi)|d\xi\\ &\leqslant L\int_{x_0}^xM(\xi-x_0)d\xi=\frac{ML}{2!}(x-x_0)^2 \end{aligned} φ2(x)φ1(x)x0xf(ξ,φ1(ξ))f(ξ,φ0(ξ))dξLx0xφ1(ξ)φ0(ξ)dξLx0xM(ξx0)dξ=2!ML(xx0)2

设对于正整数 n n n,不等式

∣ φ n ( x ) − φ n − 1 ( x ) ∣ ⩽ M L n − 1 n ! ( x − x 0 ) n |\varphi_n(x)-\varphi_{n-1}(x)|\leqslant\frac{ML^{n-1}}{n!}(x-x_0)^n φn(x)φn1(x)n!MLn1(xx0)n

则由利普希茨条件,当 x 0 ⩽ x ⩽ x 0 + h x_0\leqslant x\leqslant x_0+h x0xx0+h 时,有

∣ φ n + 1 ( x ) − φ n ( x ) ∣ ⩽ ∫ x 0 x ∣ f ( ξ , φ n ( x ) ) − f ( ξ , φ n − 1 ( x ) ) ∣ d ξ ⩽ ∫ x 0 x L ∣ φ n ( x ) − φ n − 1 ( x ) ∣ d ξ ⩽ M L n n ! ∫ x 0 x ( x − x 0 ) n d ξ = M L n ( n + 1 ) ! ( x − x 0 ) n + 1 \begin{aligned} |\varphi_{n+1}(x)-\varphi_n(x)|&\leqslant\int_{x_0}^x|f(\xi,\varphi_n(x))-f(\xi,\varphi_{n-1}(x))|d\xi\\ &\leqslant\int_{x_0}^xL|\varphi_n(x)-\varphi_{n-1}(x)|d\xi\\ &\leqslant \frac{ML^n}{n!}\int_{x_0}^x(x-x_0)^nd\xi\\ &=\frac{ML^n}{(n+1)!}(x-x_0)^{n+1} \end{aligned} φn+1(x)φn(x)x0xf(ξ,φn(x))f(ξ,φn1(x))dξx0xLφn(x)φn1(x)dξn!MLnx0x(xx0)ndξ=(n+1)!MLn(xx0)n+1

于是,由数学归纳法得知,对于所有的正整数 k k k,有如下的估计:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值