欧拉法求解微分方程_常微分方程笔记(二) 解的存在唯一性定理

30b8632bde444a0de81d2fc0e119f874.png

Picard定理

上次的文章中我们就提到了

方程一般无法使用初等积分法去求解,一个很简单的例子是下面这个
微分方程 [1]

即使形式上这样简单的方程也不存在初等求解的方法.那我们就考虑,这种方程是否有解呢?于是就有了

存在唯一性定理.

首先我们先介绍

条件:设函数
在区域
内满足不等式

其中常数

.则称函数
在区域
内对
满足
条件

定理1.(

定理) 设初值问题

其中

在矩形区域

内连续,且对
满足
条件.则
在区间
上有并且只有一个解,其中常数

该定理的证明分为以下五步(仅简要叙述):

  1. 初值问题
    等价于积分方程
  2. 迭代构造
    序列
  3. 证明该序列一致收敛,考虑级数
    利用
    判别法即可证明其一致收敛
  4. 证明该序列的极限是
    的解.等式两边取极限即可
  5. 证明唯一性.假设
    存在两个解,做差证明极限为

对于一般的微分方程

只要能够判别函数

在某个区域
内连续并且对
有连续的偏导数(或满足
条件),我们就可以断言在区域
内经过每一点有并且仅有一个解.例如方程
,我们就很容易判别它在
上经过每一点有且仅有一个解.

下面介绍一个比

更弱的条件:
条件:

设函数

在区域
内连续,而且满足不等式

其中

的连续函数,并且瑕积分

其中

为常数.则称
内对
满足
条件.

容易看出

条件是
条件的特例,因为
满足上述要求.

定理2.(

定理) 设
在区域
内对
满足
条件,则微分方程
内经过每一点的解都是唯一的.

我们用一道例题,巩固一下

序列的构造过程
例1. 试求初值问题
序列,并由此取极限求解.

【解】

所以方程的解为

Peano存在定理

定理3 设函数

在矩形区域
内连续,则初值问题

在区间

上至少有一个解
,这里矩形区域
和正数
的定义同
定理.

为了证明这个定理,我们首先引入欧拉折线的定义.先将区间

分为
等分,每份的长度为
,则分点为

然后从初始点

构造
序列,即

由此我们就得到了一条连续的折线

为初值问题
欧拉折线.

此外我们还需要

引理:设函数序列

在有限闭区间

上式一致有界和等度连续的,则可以选取它的一个子序列

使它在区间

上是一致收敛的.

由此我们知道证明

存在定理的方法,取欧拉折线序列证明其一致收敛,再证明收敛的极限函数是微分方程的解即可.

解的延伸

在之前的定理中,我们只讨论了局部范围内的性质,现在我们要讨论这解在大范围内的存在性.

定理4

为区域
内任一点,并设
为微分方程

经过

点的任一条积分曲线,则积分曲线
将在区域
内延伸到边界.

首先我们设微分方程经过

的解
有如下表达式:

其中

表示
最大存在区间.我们考虑
右侧的延伸情况,令
,证明了
既不可能是有限闭区间,也不可能是有限半开区间,于是
必为
,从而积分曲线
点的右侧将延伸到无穷远处;同理可证,其在
点的左侧也将延伸到无穷远处.

由定理1和定理4立即得到

推论 设函数

在区域
内连续,而且对
满足局部
条件,则微分方程

经过

内任一点
存在唯一的积分曲线
,并且
内延伸到边界.

参考

  1. ^请大家一起来解这个微分方程 https://zhuanlan.zhihu.com/p/81640766
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值