维纳滤波器(Wiener Filter)介绍及公式推导

一、维纳滤波器介绍 

1.1系统输入与输出

        维纳滤波器(Wiener Filter)是一种处理离散信号的线性最优滤波器,它的设计目的是使输出信号与期望信号之间的均方误差(MSE)最小化。

        输入信号为:

u(n)=d(n)+v(n)

        d(n)为期望响应,也就是在不含误差的情况下的理想输出,假设其均值为0(一般会对信号进行减去均值处理),即E[d(n)]=0v(n)为噪声,u(n)是滤波器的输入,可以看作是我们实际测量得到的包含误差的原始数据。

        输出信号为:

y(n)=w(n)*u(n)

        w(n)为维纳滤波器的系数(冲激响应),*为卷积符号,y(n)为滤波器的输出,称为我们的估计量。滤波器系统框图如下:

        假设FIR滤波器有M阶,滤波器抽头系数为w(0),w(1),w(2),...,w(M-1),输入为u(n),u(n-1),u(n-2),...,u(n-M+1),滤波器n时刻的输出可以写作:

        y(n)=\sum_{k=0}^{\infty }w_{k}^{*}u(n-k),\; \; \; \; n=0,1,2,...\; \; \; \; (1)

        n时刻滤波器的输出为滤波器冲激响应和滤波器输入的线性卷积,其中,k表示滤波器的第k阶抽头。我们讨论的信号是在复数域的,此时星号*表示复共轭。FIR滤波器系统框图为:

1.2维纳滤波器目标

        维纳滤波器的目标是找到线性最优的w(n),使估计量y(n)在均方误差意义下最大程度接近我们的期望响应d(n),以上述FIR滤波器为例,估计量与期望相应之差为:

e(n)=d(n)-y(n)=d(n)-\sum_{k=0}^{M-1}w_{k}^{*}u(n-k)\; \; \; \; (2)

        基于均方误差,我们的目标误差函数为:

J(w) = E[\left | e(n) \right |^{2}]=E[e(n)e^{*}(n)]\; \; \; \; (3)

        维纳滤波器的目标是使J(w)最小,我们需要找到是minJ(w)时对应的滤波器系数w

二、维纳-霍夫方程(Wiener-Hopf equation)推导

2.1维纳-霍夫方程推导

        为了找到使滤波器输出均方误差最小的系数w(n),首先将(2)带入(3)并展开,得:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值