动态系统的建模与分析

参考:DR_CAN

相同领域的文章:

1.介绍

解决一个控制系统的问题:

  • 对研究对象进行分析
  • 控制器设计
  • 测试

  分析被控对象的物理特性及动态表现,在这个基础上建立数学模型,数学模型可以是动力学模型、热力学模型、流体力学模型和经济学模型等,然后在数学模型的基础上进行控制器的设计,为满足不同的要求就要应用不同的控制方法(传统控制控制、PID控制、非线性控制、自适应控制和优化控制等),紧接着选择测试平台,可以是仿真平台、实验室模型样机和真实设备等。最后不断将实验结果与模型比较,对数学模型不断的验证和更新。

涉及的内容:
动态系统建模:

  • 电力,KCL,KVL
  • 流体
  • 热力学
  • 机械系统

拉普拉斯+微分方程
时域分析
频域分析

2.电路系统建模

基础元件:

基础元件 单位 符号
电量 库仑(c) q q q
电流 安培(A) i i i
电压 伏特(V) e e e
电阻 欧姆(Ω) R R R
电容 法拉(F) C C C
电感 亨利(H) L L L

流速: i = d q d t i=\frac{dq}{dt} i=dtdq
电阻电压: e R = i R e_R=iR eR=iR
在这里插入图片描述

电量: q = C e c q=Ce_c q=Cec
e c = 1 C q = 1 C ∫ 0 t i d t e_c=\frac{1}{C}q=\frac{1}{C}\int_0^tidt ec=C1q=C10tidt
在这里插入图片描述
电感:
e L = L d i d t = L i ′ e_L=L\frac{di}{dt}=Li^{\prime} eL=Ldtdi=Li
在这里插入图片描述


基尔霍夫定律
  KCL:所有进入某节点的电流的总和等于所有离开这个节点的电流的总和。
i 1 + i 2 − i 3 − i 4 = 0 i_1+i_2-i_3-i_4=0 i1+i2i3i4=0
在这里插入图片描述

  KVL:沿着闭合回路所有元件两端的电压的代数和为零。
e R − e = 0 e_R-e=0 eRe=0
在这里插入图片描述


在这里插入图片描述
KVL:
e L + e C + e R − e = 0 e_L+e_C+e_R-e=0 eL+eC+eRe=0
L i ′ + 1 C ∫ 0 t i d t + i R = e Li^{\prime}+\frac{1}{C}\int_0^tidt+iR=e Li+C10tidt+iR=e
两边求导:
L i ′ ′ + i ′ R + 1 C i = e ′ Li^{\prime\prime}+i^{\prime}R+\frac{1}{C}i=e^{\prime} Li+iR+C1i=e


在这里插入图片描述
L = 2 H C = 1 4 F R 1 = 1 Ω R 2 = 3 Ω L=2H \\C=\frac{1}{4}F\\ R_1=1\Omega\\ R_2=3\Omega L=2HC=41FR1=1ΩR2=3Ω

loop 1:
e L + e C − e i = 0 e_L+e_C-e_i=0 eL+eCei=0
loop 2:
e R 1 + e R 2 − e C = 0 e_{R1}+e_{R2}-e_C=0 eR1+eR2eC=0

合并:
e L + e R 1 + e R 2 − e i = 0 e_L+e_{R1}+e_{R2}-e_i=0 eL+eR1+eR2ei=0
  这是一个大圈,因此在用KVL时,不一定都用小圈,也可用大圈。

e L = L i 1 ′ = 2 i 1 ′ e_L=Li_1^{\prime}=2i_1^{\prime} eL=Li1=2i1
e C = 1 C ∫ 0 t ( i 1 − i 2 ) d t = 4 ∫ 0 t ( i 1 − i 2 ) d t e_C=\frac{1}{C}\int_0^t (i_1-i_2) dt=4\int_0^t (i_1-i_2) dt eC=C10t(i1i2)dt=40t(i1i2)dt
e R 1 = i 2 R 1 = i 2 e_{R1}=i_2R_1=i_2 eR1=i2R1=i2
e R 1 = i 2 R 2 = 3 i 2 e_{R1}=i_2R_2=3i_2 eR1=i2R2=3i2

loop 1:
2 L i 1 ′ + 4 ∫ 0 t ( i 1 − i 2 ) d t − e i = 0 (1) 2Li_1^{\prime}+4\int_0^t (i_1-i_2) dt-e_i=0\tag{1} 2Li1+40t(i1i2)dtei=0(1)
loop 2:
4 i 2 − 4 ∫ 0 t ( i 1 − i 2 ) d t = 0 (2) 4i_2-4\int_0^t (i_1-i_2) dt=0\tag{2} 4i240t(i1i2)dt=0(2)

由(1)(2)式得:
2 i 1 ′ + 4 i 2 − e i = 0 (3) 2i_1^{\prime}+4i_2-e_i=0\tag{3} 2i1+4i2ei=0(3)
由(2)得:
i 2 ′ = i 1 − i 2 i 2 ′ ′ = i 1 ′ − i 2 ′ (4) i_2^{\prime}=i_1-i_2\\ i_2^{\prime\prime}=i_1^{\prime}-i_2^{\prime} \tag{4} i2=i1i2i2=i1i2(4)
由(3)(4)式得:
2 ( i 2 ′ ′ + i 2 ′ ) + 4 i 2 = e i (5) 2(i_2^{\prime\prime}+i_2^{\prime})+4i_2=e_i\tag{5} 2(i2+i2)+4i2=ei(5)

e o e_o eo e i e_i ei的关系:
e o = e R = 3 i 2 (6) e_o=e_R=3i_2\tag{6} eo=eR=3i2(6)

由(5)(6)式得:
2 ( e o ′ ′ + e o ′ ) + 4 e o = 3 e i 2(e_o^{\prime\prime}+e_o^{\prime})+4e_o=3e_i 2(eo+eo)+4eo=3ei

小结:
  KVL列方程,然后消掉自己定义的电流


在这里插入图片描述

loop 1:
i 1 R 1 + ( i 1 − i 2 ) R 2 − e i = 0 16 3 i 1 − 4 i 2 − e i = 0 (1) i_1R1+(i_1-i_2)R2-e_i=0\\ \frac{16}{3}i_1-4i_2-e_i=0\tag{1} i1R1+(i1i2)R2ei=0316i14i2ei=0(1)

loop 2:
( i 2 − i 3 ) R 3 + i 2 R 4 − ( i 1 − i 2 ) R 2 = 0 − 4 i 1 + 9 i 2 − 3 i 3 = 0 (2) (i_2-i_3)R3+i_2R4-(i_1-i_2)R2=0\\ -4i_1+9i_2-3i_3=0\tag{2} (i2i3)R3+i2R4(i1i2)R2=04i1+9i23i3=0(2)

loop 3:
1 C ∫ 0 t i 3 d t − ( i 2 − i 3 ) R 3 = 0 i 3 = 3 C ( i 2 ′ − i 3 ′ ) (3) \frac{1}{C}\int_0^t i_3 dt-(i_2-i_3)R3=0\\ i_3=3C(i_2^{\prime}-i_3^{\prime})\tag{3} C10ti3dt(i2i3)R3=0i3=3C(i2i3)(3)

  我们的目的是找到 e i e_i ei e o e_o eo的关系,而 e o = 2 i 2 e_o=2i_2 eo=2i2,因此想先消去 i 1 i_1 i1 i 3 i_3 i3,再消去 i 2 i_2 i2

由(1)(2)式得:
− 4 ( 3 4 i 2 + 3 16 e i ) + 9 i 2 − 3 i 3 = 0 2 i 2 − i 3 − 1 4 e i = 0 (4) -4(\frac{3}{4}i_2+\frac{3}{16}e_i)+9i_2-3i_3=0\\ 2i_2-i_3-\frac{1}{4}e_i=0\tag{4} 4(43i2+163ei)+9i23i3=02i2i341ei=0(4)

由(3)(4)式得:
2 i 2 − 3 C ( i 2 ′ − i 3 ′ ) − 1 4 e i = 0 (5) 2i_2-3C(i_2^{\prime}-i_3^{\prime})-\frac{1}{4}e_i=0\tag{5} 2i23C(i2i3)41ei=0(5)

(5)式还有 i 3 ′ i_3^{\prime} i3没消去,为了不引入新的变量,对(4)式求导:
2 i 2 ′ − i 3 ′ − 1 4 e i ′ = 0 (6) 2i_2^{\prime}-i_3^{\prime}-\frac{1}{4}e_i^{\prime}=0\tag{6} 2i2i341ei=0(6)

由(5)(6)式得:
2 i 2 − 3 C ( i 2 ′ − ( 2 i 2 ′ − 1 4 e i ′ ) ) − 1 4 e i = 0 2 i 2 + 3 C i 2 ′ − 3 4 C e i ′ − 1 4 e i = 0 (7) 2i_2-3C(i_2^{\prime}-(2i_2^{\prime}-\frac{1}{4}e_i^{\prime}))-\frac{1}{4}e_i=0\\ 2i_2+3Ci_2^{\prime}-\frac{3}{4}Ce_i^{\prime}-\frac{1}{4}e_i=0\tag{7} 2i23C(i2(2i241ei))41ei=02i2+3Ci243Cei41ei=0(7)

只有电流 i 2 i_2 i2,这样就可以引入 e o e_o eo了:
e o + 3 2 C e o ′ = 1 4 e i + 3 4 C e i ′ (8) e_o+\frac{3}{2}Ce_o^{\prime}=\frac{1}{4}e_i+\frac{3}{4}Ce_i^{\prime}\tag{8} eo+23Ceo=41ei+43Cei(8)

3.流体系统建模

流体系统的几个基本元素:
  此处默认为不可压缩的均质流体

密度 ρ \rho ρ k g / m 3 kg/m^3 kg/m3
流量flow rate q q q m 3 / s m^3/s m3/s
体积 v m 3 m^3 m3
高度hight h m
压强pressure P N / m 2 N/m^2 N/m2

  压强有三个概念,比如说对于容器的液体来说,它的高度是 h h h,横截面积是 A A A,由流体重力产生的压强称之为静压(Hydrostatic Pressure):
P H y d r o = F H y d r o A = m g A = ρ V g A = ρ A h g A = ρ g h A = ρ g h \begin{aligned} P_{Hydro} & = \frac{F_{Hydro}}{A} = \frac{mg}{A} = \frac{\rho V g}{A}\\ & = \frac{\rho Ah g}{A} = \frac{\rho g h}{A} = \rho g h \end{aligned} PHydro=AFHydro=Amg=AρVg=AρAhg=Aρgh=ρgh

  除了液体的压强以外还有大气压强,绝对压强(Absolute Pressure):
P a b s = P a + P H y d r o = P a + ρ g h P_{abs}=P_a+P_{Hydro}=P_a+ \rho g h Pabs=Pa+PHydro=Pa+ρgh

  测量出来的压力称为表压(Gauge Pressure):
P g a u g e = P a b s − P a = ρ g h P_{gauge}=P_{abs}-P_a= \rho g h Pgauge=PabsPa=ρgh
在这里插入图片描述


流阻Fluid Resistance
  产生流阻的原因是流体在流动的过程中,通过一些管道连接等,这些都会阻碍流体的流动,因此会产生压差,压差和流量相关:
P 1 − P 2 = ρ q R P_1-P_2=\rho q R P1P2=ρqR
   ρ q = k g / m 3 ⋅ m 3 / s = k g / s \rho q=kg/m^3\cdot m^3/s=kg/s ρq=kg/m3m3/s=kg/s:每秒钟通过横截面的流体的质量,两边的压力差越大,每秒钟流过的流体的越多。

  流阻和电阻的概念非常相似:
e 1 − e 2 = i R e_1-e_2=i R e1e2=iR

在这里插入图片描述

理想压源
P 2 = P 1 + P s P_2=P_1+P_s P2=P1+Ps
在这里插入图片描述


基本法则-质量守恒定律Conseration of Mass
  有了基本元素,还需要基本法则把它们联系在一起,就像电路当中有基尔霍夫定律,在力学当中有牛顿定律一样,这里面我们用到的是质量守恒定律,容器内流体质量的变化:
d m d t = m ˙ i n − m ˙ o u t \frac{\mathrm{d} m}{\mathrm{d} t} =\dot{m}_{in}-\dot{m}_{out} dtdm=m˙inm˙out
式子两边除以 ρ \rho ρ:
d V d t = q ˙ i n − q ˙ o u t \frac{\mathrm{d} V}{\mathrm{d} t} =\dot{q}_{in}-\dot{q}_{out} dtdV=q˙inq˙out
⇒ A d h d t = q ˙ i n − q ˙ o u t \Rightarrow A\frac{\mathrm{d} h}{\mathrm{d} t} =\dot{q}_{in}-\dot{q}_{out} Adtdh=q˙inq˙out
⇒ d h d t = 1 A ( q ˙ i n − q ˙ o u t ) \Rightarrow \frac{\mathrm{d} h}{\mathrm{d} t} =\frac{1}{A}(\dot{q}_{in}-\dot{q}_{out}) dtdh=A1(q˙inq˙out)
在这里插入图片描述
  容器底部受到的压力:
P = P a + ρ g h P=P_a+\rho gh P=Pa+ρgh
   其动态方程为:
d P d t = d d t ( P a + ρ g h ) = ρ g d h d t = ρ g A ( q ˙ i n − q ˙ o u t ) \begin{aligned} \frac{\mathrm{d} P}{\mathrm{d} t} &= \frac{\mathrm{d} }{\mathrm{d} t}(P_a+\rho gh)\\ & = \rho g\frac{\mathrm{d} h}{\mathrm{d} t} \\& = \frac{ \rho g}{A}(\dot{q}_{in}-\dot{q}_{out}) \end{aligned} dtdP=dtd(Pa+ρgh)=ρgdtdh=Aρg(q˙inq˙out)


在这里插入图片描述

  进口处为 q i n q_{in} qin,出口处 q o u t q_{out} qout,容器得横截面积为 A A A,出口流阻为u R R R,求液面高度的动态方程 d h d t \frac{dh}{dt} dtdh.

  由质量守恒定律:
d V d t = q ˙ i n − q ˙ o u t \frac{\mathrm{d} V}{\mathrm{d} t} =\dot{q}_{in}-\dot{q}_{out} dtdV=q˙inq˙out
⇒ d h d t = 1 A ( q ˙ i n − q ˙ o u t ) \Rightarrow \frac{\mathrm{d} h}{\mathrm{d} t} =\frac{1}{A}(\dot{q}_{in}-\dot{q}_{out}) dtdh=A1(q˙inq˙out)

  流阻压差:
P 1 − P a = ρ q o u t R P_1-P_a=\rho q_{out}R P1Pa=ρqoutR
q o u t = P 1 − P a ρ R = P a − ρ g h − P a ρ R = g h R \begin{aligned} q_{out} &=\frac{P_1-P_a}{\rho R}\\ &=\frac{P_a-\rho gh-P_a}{\rho R}\\ &=\frac{gh}{ R} \end{aligned} qout=ρRP1Pa=ρRPaρghPa=Rgh

⇒ d h d t = q ˙ i n A − g h A R \Rightarrow \frac{\mathrm{d} h}{\mathrm{d} t} =\frac{\dot{q}_{in}}{A}-\frac{gh}{ AR} dtdh=Aq˙inARgh

4.拉普拉斯变换

  拉普拉斯变换是控制理论的基础,它广泛的应用于工程分析当中,它可以把时域( t t t)上的函数变换到复数域( s = σ + j w s=\sigma+jw s=σ+jw)上,从而大大简化系统分析的难度和复杂程度。
f ( t ) → F ( s ) f(t) \to F(s) f(t)F(s)

  先从一个简单的电路系统开始,它的动态方程:
e ′ = L i ′ ′ + R i ′ + 1 C i e^{'}=Li^{''}+Ri^{'}+\frac{1}{C}i e=Li+Ri+C1i

在这里插入图片描述

  定义系统的输入为 e e e,输出为 i i i,分析电流的变化。本质上就是求解微分方程的过程,假设 g ( t ) g(t) g(t)就是变化过程, g ( t ) g(t) g(t)隐含了系统的特征,就是微分方程表现出来的内容,三者的关系其实是一个卷积的过程。因此分析这样一个系统,它涉及到了卷积和微分方程,分析和计算起来都非常麻烦,而且不是很直观。拉普拉斯变换可以帮助我们解决这些问题,通过拉普拉斯变换,微分方程变成了代数方程,卷积运算变成了乘法运算。
在这里插入图片描述


  对时域函数 f ( t ) f(t) f(t)作拉普拉斯变换:
L [ f ( t ) ] = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L[f(t)]}=F(s)=\int_0^\infty f(t)e^{-st}dt L[f(t)]=F(s)=0f(t)estdt

   f ( t ) f(t) f(t)是一个平面图形,经过拉普拉斯变换后三维的复数域。当 σ = 0 \sigma=0 σ=0时,从箭头的方向看过去,就是傅里叶变换,可以看到拉普拉斯变换和傅里叶变换的关系。
F ( s ) = F ( w ) = ∫ 0 ∞ f ( t ) e − j w t d t F(s)=F(w)=\int_0^\infty f(t)e^{-jwt}dt F(s)=F(w)=0f(t)ejwtdt
在这里插入图片描述

  从上向下看就是复平面,做工程的往往会关注系统的极点和零点在复平面上的位置.


指数函数 f ( t ) = e − a t f(t)=e^{-at} f(t)=eat的拉普拉斯变换
L [ f ( t ) ] = ∫ 0 ∞ e − a t e − s t d t = ∫ 0 ∞ e − ( a + s ) t d t = − 1 a + s e − ( a + s ) t ∣ 0 ∞ = lim ⁡ t → ∞ − 1 a + s e − ( a + s ) t − ( − 1 a + s ) = 1 a + s \begin{aligned} \mathcal{L}[f(t)] & = \int_0^\infty e^{-at} e^{-st}dt\\ & = \int_0^\infty e^{-(a+s)t}dt\\ & = -\frac{1}{a+s} \left. e^{-(a+s)t}\right|_0^\infty\\ & = \lim_{t \to \infty}-\frac{1}{a+s}e^{-(a+s)t}-(-\frac{1}{a+s})\\ & = \frac{1}{a+s} \end{aligned} L[f(t)]=0eatestdt=0e(a+s)tdt=a+s1e(a+s)t0=tlima+s1e(a+s)t(a+s1)=a+s1

  拉普拉斯变换的重要性质:符合线性变换,线性变换符合叠加原理
L [ a f ( t ) + b g ( t ) ] = a F ( s ) + b G ( s ) \mathcal{L}[af(t)+bg(t)]=aF(s)+bG(s) L[af(t)+bg(t)]=aF(s)+bG(s)


正弦 sin ⁡ a t \sin at sinat的拉普拉斯变换

根据欧拉公式转化为复指数
e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos \theta+i\sin \theta eiθ=cosθ+isinθ
e − i θ = cos ⁡ θ − i sin ⁡ θ e^{-i\theta}=\cos \theta-i\sin \theta eiθ=cosθisinθ
两式相减:

e i θ − e − i θ = 2 i sin ⁡ θ sin ⁡ θ = e i θ − e − i θ 2 i e^{i\theta}-e^{-i\theta}=2i\sin \theta\\ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} eiθeiθ=2isinθsinθ=2ieiθeiθ

sin ⁡ a t = e i a t − e − i a t 2 i \sin at=\frac{e^{iat}-e^{-iat}}{2i} sinat=2ieiateiat

  因为拉普拉斯变换是一个线性变换
L [ e i a t 2 i ] − L [ e − i a t 2 i ] = 1 2 i

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值