【线性代数·上·笔记一 】几个简单的秩不等式

本文探讨了几个关于矩阵秩的不等式,包括秩的加法性质、乘积秩的上下界以及Sylvester不等式,通过线性映射和矩阵操作的视角进行证明。
摘要由CSDN通过智能技术生成

前言

这几个秩不等式很常见,重要的是通过线性空间和线性映射的观点去证明。


命题
A A A, B B B n n n 阶方阵, A B = 0 AB=0 AB=0 ,则有
r a n k ( A ) + r a n k ( B ) ≤ n rank(A) + rank(B)\le n rank(A)+rank(B)n

分析
线性映射基本定理的简单应用。

证明
A B = 0 AB=0 AB=0 说明 B B B 的每一列都被 B B B 映成零向量,从而 s p a n ( B ) ∈ K e r ( A ) span(B) \in Ker(A) span(B)Ker(A) ,那么有
r a n k ( B ) = d i m S p a n ( B ) ≤ d i m K e r ( A ) rank(B)=dimSpan(B) \leq dimKer(A) rank(B)=dimSpan(B)dimKer(A)
由线性映射基本定理可得
r a n k ( A ) + r a n k ( B ) ≤ d i m S p a n ( A ) + d i m K e r ( A ) = n rank(A) + rank(B)\le dimSpan(A) +dimKer(A)=n rank(A)+rank(B)dimSpan(A)+dimKer(A)=n
于是得证。


命题
A A A, B B B m × n m \times n m×n n × p n \times p n×p 矩阵,则有
r a n k ( A B ) ≤ m i n { r a n k ( A ) , r a n k ( B ) } rank(AB) \leq min\{rank(A), rank(B)\} rank(AB)min{rank(A),rank(B)}

分析
所谓的“秩越乘越小”。可以通过矩阵乘法运算得到这个结论,这里我们考虑另一种办法。

证明
A B AB AB 乘一个列向量 α \alpha α 可以看作两步。第一步, B B B α \alpha α;第二步, A A A 再乘 B α B\alpha Bα

第一步可以看作映射:
σ 1 : F p → F n , [ x 1 ⋮ x p ] ↦ B [ x 1 ⋮ x p ] \sigma_1:\mathbb{F}^{p}\to\mathbb{F}^{n}, \begin{bmatrix} x_1\\ \vdots\\ x_p \end{bmatrix} \mapsto B\begin{bmatrix} x_1\\ \vdots\\ x_p \end{bmatrix} σ1:FpFn, x1xp B x1xp
第二步可以看作映射,这一步的像集也就是 I m ( A B ) Im(AB) Im(AB)
σ 2 : S p a n ( B ) → F m , [ x 1 ⋮ x n ] ↦ A [ x 1 ⋮ x m ] \sigma_2:Span(B)\to\mathbb{F}^{m}, \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix} \mapsto A \begin{bmatrix} x_1\\ \vdots\\ x_m \end{bmatrix} σ2:Span(B)Fm, x1xn A x1xm
所以
r a n k ( A B ) = d i m ( S p a n ( A ∣ I m ( B ) ) ) rank(AB)=dim(Span(A\big|_{Im(B)})) rank(AB)=dim(Span(A Im(B)))

由于
S p a n ( A ∣ I m ( B ) ) ∈ S p a n ( A ) Span(A\big|_{Im(B)})\in Span(A) Span(A Im(B))Span(A)
从而 r a n k ( A B ) ≤ r a n k ( A ) rank(AB) \leq rank(A) rank(AB)rank(A)
由于转置运算不改变矩阵的秩,所以 r a n k ( A B ) = r a n k ( B T A T ) ≤ r a n k ( B T ) = r a n k ( B ) rank(AB)=rank(B^TA^T) \leq rank(B^T)=rank(B) rank(AB)=rank(BTAT)rank(BT)=rank(B)
整理即有 r a n k ( A B ) ≤ m i n { r a n k ( A ) , r a n k ( B ) } rank(AB) \leq min\{rank(A), rank(B)\} rank(AB)min{rank(A),rank(B)}


命题(Sylvester不等式)
A A A, B B B n n n 阶方阵, A B = 0 AB=0 AB=0 ,则有
r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB) \ge rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n

分析
与上一个不等式的证明思路类似。

证明
即证明
n − r a n k ( A ) ≥ r a n k ( B ) − r a n k ( A B ) n - rank(A) \ge rank(B) - rank(AB) nrank(A)rank(B)rank(AB)
发现
左边 = d i m K e r ( A ) ≥ 右边 = d i m K e r ( A ∣ I m ( B ) ) 左边 = dimKer(A)\geq右边=dimKer(A|_{Im(B)}) 左边=dimKer(A)右边=dimKer(AIm(B))
从而得到了证明。


命题
A A A, B B B m × p m \times p m×p m × q m \times q m×q 矩阵,则有
r a n k ( A + B ) ≤ r a n k ( A ∣ B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B) \leq rank(A|B)\leq rank(A)+rank(B) rank(A+B)rank(AB)rank(A)+rank(B)

分析
将矩阵看作列向量组,然后观察它们的关系

证明
显然 A + B A+B A+B 的列向量组可以被 A ∣ B A|B AB 线性表出,故 r a n k ( A + B ) ≤ r a n k ( A ∣ B ) rank(A+B) \leq rank(A|B) rank(A+B)rank(AB)

A , B A,B A,B 的极大无关组分别是 ( α 1 , α 2 , … , α s ) (\alpha_1,\alpha_2,\dots,\alpha_s) (α1,α2,,αs) ( β 1 , β 2 , … , β k ) (\beta_1,\beta_2,\dots,\beta_k) (β1,β2,,βk)

那么 r a n k ( A ∣ B ) = r a n k ( α 1 , α 2 , … , α s , β 1 , β 2 , … , β s ) ≤ s + k = r a n k ( A ) + r a n k ( B ) rank(A|B) = rank(\alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_s) \leq s+k=rank(A)+rank(B) rank(AB)=rank(α1,α2,,αs,β1,β2,,βs)s+k=rank(A)+rank(B)

于是得到了证明。


命题
A A A, B B B s × n s \times n s×n l × m l \times m l×m 矩阵,则有
r a n k ( A O O B ) = r a n k ( A ) + r a n k ( B ) rank \begin{pmatrix} A&O \\ O&B\\ \end{pmatrix} = rank(A)+rank(B) rank(AOOB)=rank(A)+rank(B)

分析
证明思路与上一题一致

证明
A , B A,B A,B 的极大无关组分别是 ( α 1 , α 2 , … , α j ) (\alpha_1,\alpha_2,\dots,\alpha_j) (α1,α2,,αj) ( β 1 , β 2 , … , β k ) (\beta_1,\beta_2,\dots,\beta_k) (β1,β2,,βk) ,所以
r a n k ( A O O B ) = r a n k ( ( α 1 0 ) , ( α 2 0 ) , … , ( α j 0 ) , ( 0 β 1 ) , ( 0 β 2 ) , … , ( 0 β k ) ) rank \begin{pmatrix} A&O \\ O&B\\ \end{pmatrix}=rank \begin{pmatrix} \begin{pmatrix} \alpha_1\\ 0\\ \end{pmatrix},\begin{pmatrix} \alpha_2\\ 0\\ \end{pmatrix},\dots, \begin{pmatrix} \alpha_j\\ 0\\ \end{pmatrix}, \begin{pmatrix} 0\\ \beta_1\\ \end{pmatrix},\begin{pmatrix} 0\\ \beta_2\\ \end{pmatrix},\dots, \begin{pmatrix} 0\\ \beta_k\\ \end{pmatrix} \end{pmatrix} rank(AOOB)=rank((α10)(α20),(αj0),(0β1)(0β2),(0βk))
由定义立得右边的向量组线性无关,所以
r a n k ( A O O B ) = j + k = r a n k ( A ) + r a n k ( B ) rank \begin{pmatrix} A&O \\ O&B\\ \end{pmatrix} = j+k=rank(A)+rank(B) rank(AOOB)=j+k=rank(A)+rank(B)
这样就证明了这个等式。


命题
A , B , C A,B,C A,B,C s × n , l × m , s × m s \times n,l \times m,s \times m s×n,l×m,s×m 矩阵,则有
r a n k ( A O C B ) ≥ r a n k ( A ) + r a n k ( B ) rank \begin{pmatrix} A&O \\ C&B\\ \end{pmatrix} \ge rank(A)+rank(B) rank(ACOB)rank(A)+rank(B)

分析
证明思路与上一题没差多少

证明
A , B A,B A,B 的极大无关组分别是 ( α 1 , α 2 , … , α j ) (\alpha_1,\alpha_2,\dots,\alpha_j) (α1,α2,,αj) ( β 1 , β 2 , … , β k ) (\beta_1,\beta_2,\dots,\beta_k) (β1,β2,,βk) ,所以

r a n k ( A O C B ) ≥ r a n k ( ( α 1 c 1 ) , ( α 2 c 2 ) , … , ( α j c j ) , ( 0 β 1 ) , ( 0 β 2 ) , … , ( 0 β k ) ) rank \begin{pmatrix} A&O \\ C&B\\ \end{pmatrix} \ge rank \begin{pmatrix} \begin{pmatrix} \alpha_1\\ c_1\\ \end{pmatrix},\begin{pmatrix} \alpha_2\\ c_2\\ \end{pmatrix},\dots, \begin{pmatrix} \alpha_j\\ c_j\\ \end{pmatrix}, \begin{pmatrix} 0\\ \beta_1\\ \end{pmatrix},\begin{pmatrix} 0\\ \beta_2\\ \end{pmatrix},\dots, \begin{pmatrix} 0\\ \beta_k\\ \end{pmatrix} \end{pmatrix} rank(ACOB)rank((α1c1)(α2c2),(αjcj),(0β1)(0β2),(0βk))
这是因为由定义立即知右边的向量组线性无关,而且 ( ( α 1 c 1 ) , ( α 2 c 2 ) , … , ( α j c j ) ) (\begin{pmatrix} \alpha_1\\ c_1\\ \end{pmatrix},\begin{pmatrix} \alpha_2\\ c_2\\ \end{pmatrix},\dots, \begin{pmatrix} \alpha_j\\ c_j\\ \end{pmatrix}) ((α1c1)(α2c2),(αjcj)) 不一定张成 S p a n ( A C ) Span \begin{pmatrix} A\\C \end{pmatrix} Span(AC),从而就不难得到
r a n k ( A O C B ) ≥ r a n k ( A ) + r a n k ( B ) rank \begin{pmatrix} A&O \\ C&B\\ \end{pmatrix} \ge rank(A)+rank(B) rank(ACOB)rank(A)+rank(B)

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性代数超强笔记,可用于期末复习,考研等」线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值