线性代数中一些有关秩的不等式
- 不等式零、矩阵乘以可逆矩阵,矩阵的秩不变
- 不等式一、 r ( A + B ) ⩽ r ( A ) + r ( B ) {\rm r}(A+B)\leqslant{\rm r}(A)+{\rm r}(B) r(A+B)⩽r(A)+r(B)
- 不等式二、如果 A n B n = O A_nB_n=O AnBn=O,那么 r ( A ) + r ( B ) ⩽ n {\rm r}(A)+{\rm r(B)\leqslant n} r(A)+r(B)⩽n
- 不等式三、如果 A n × n 2 = E A_{n\times n}^2=E An×n2=E,那么 r ( A + E ) + r ( A − E ) = n {\rm r}(A+E)+{\rm r}(A-E)=n r(A+E)+r(A−E)=n
- 不等式四、如果 A n × n 2 = A A_{n\times n}^2=A An×n2=A,证明 r ( A ) + r ( A − E ) = n {\rm r}(A)+{\rm r}(A-E)=n r(A)+r(A−E)=n
- 不等式五、设 A = ( a i j ) s × n , B = ( b i j ) n × m A=(a_{ij})_{s\times n},B=(b_{ij})_{n\times m} A=(aij)s×n,B=(bij)n×m,证明: r ( A B ) ⩾ r ( A ) + r ( B ) − n {\rm r}(AB)\geqslant {\rm r}(A)+{\rm r}(B)-n r(AB)⩾r(A)+r(B)−n
- 不等式六、任给 A , B , C ∈ P n × n A,B,C\in P^{n\times n} A,B,C∈Pn×n,证明 r ( A B ) + r ( B C ) ⩽ r ( A B C ) + r ( B ) {\rm r}(AB)+{\rm r}(BC)\leqslant{\rm r}(ABC)+{\rm r}(B) r(AB)+r(BC)⩽r(ABC)+r(B)
不等式零、矩阵乘以可逆矩阵,矩阵的秩不变
矩阵与可逆矩阵相乘,相当于对矩阵对一系列初等变换。因为初等变换不改变矩阵的秩,所以乘以可逆矩阵不改变矩阵的秩。
不等式一、 r ( A + B ) ⩽ r ( A ) + r ( B ) {\rm r}(A+B)\leqslant{\rm r}(A)+{\rm r}(B) r(A+B)⩽r(A)+r(B)
提示: 利用 A , B A,B A,B 和 A + B A+B A+B 的各个列向量组的极大线性无关组间的线性表出关系
证明: 令
A
=
(
A
1
A
2
⋯
A
n
)
,
B
=
(
B
1
B
2
⋯
B
n
)
,
A
i
,
B
j
(
i
,
j
=
1
,
2
,
⋯
,
n
)
A=(A_1A_2\cdots A_n),B=(B_1B_2\cdots B_n),A_i,B_j(i,j=1,2,\cdots,n)
A=(A1A2⋯An),B=(B1B2⋯Bn),Ai,Bj(i,j=1,2,⋯,n)都是列向量.
A
+
B
=
(
A
1
+
B
1
,
A
2
+
B
2
,
⋯
,
A
n
+
B
n
)
,
A+B=(A_1+B_1,A_2+B_2,\cdots,A_n+B_n),
A+B=(A1+B1,A2+B2,⋯,An+Bn), 它的每个列向量都可由列向量组
A
1
,
A
2
,
⋯
,
A
n
,
B
1
,
B
2
,
⋯
,
B
n
A_1,A_2,\cdots,A_n,B_1,B_2,\cdots,B_n
A1,A2,⋯,An,B1,B2,⋯,Bn 线性表出.又设
A
i
1
,
A
i
2
,
⋯
,
A
i
r
A_{i1},A_{i2},\cdots,A_{ir}
Ai1,Ai2,⋯,Air 及
B
j
1
,
B
j
2
,
⋯
,
B
j
s
B_{j1},B_{j2},\cdots,B_{js}
Bj1,Bj2,⋯,Bjs 分别式
A
1
,
A
2
,
⋯
,
A
n
A_1,A_2,\cdots,A_n
A1,A2,⋯,An 和
B
1
,
B
2
,
⋯
,
B
n
B_1,B_2,\cdots,B_n
B1,B2,⋯,Bn 的极大线性无关组,则
A
1
+
B
1
,
A
2
+
B
2
,
⋯
,
A
n
+
B
n
A_1+B_1,A_2+B_2,\cdots,A_n+B_n
A1+B1,A2+B2,⋯,An+Bn 都可由向量组
A
i
1
,
A
i
2
,
⋯
,
A
i
r
,
B
j
1
,
B
j
2
,
⋯
,
B
j
s
A_{i1},A_{i2},\cdots,A_{ir},B_{j1},B_{j2},\cdots,B_{js}
Ai1,Ai2,⋯,Air,Bj1,Bj2,⋯,Bjs线性表出. 故
r
(
A
+
B
)
=
r
{
A
1
+
B
1
,
A
2
+
B
2
,
⋯
,
A
n
+
B
n
}
⩽
r
{
A
i
1
,
A
i
2
,
⋯
,
A
i
r
,
B
j
1
,
B
j
2
,
⋯
,
B
j
s
}
⩽
r
+
s
=
r
A
+
r
B
(1)
\begin{aligned} {\rm r}(A+B)&=r\{A_1+B_1,A_2+B_2,\cdots,A_n+B_n\}\\ &\leqslant r\{A_{i1},A_{i2},\cdots,A_{ir},B_{j1},B_{j2},\cdots,B_{js}\}\\ &\leqslant r+s\\ &={\rm r}{A}+{\rm r}{B}\tag{1} \end{aligned}
r(A+B)=r{A1+B1,A2+B2,⋯,An+Bn}⩽r{Ai1,Ai2,⋯,Air,Bj1,Bj2,⋯,Bjs}⩽r+s=rA+rB(1)
不等式二、如果 A n B n = O A_nB_n=O AnBn=O,那么 r ( A ) + r ( B ) ⩽ n {\rm r}(A)+{\rm r(B)\leqslant n} r(A)+r(B)⩽n
提示: 利用齐次方程组的知识
证明:
A
B
=
O
AB=O
AB=O,
B
B
B 的每个列向量都是齐次方程组
A
X
=
0
AX=0
AX=0 的解,故能由它的基础解系线性表出,于是
r
(
B
)
⩽
{\rm r}(B)\leqslant
r(B)⩽ 基础解系的秩
=
n
−
r
(
A
)
=n-{\rm r}(A)
=n−r(A).所以
r
(
A
)
+
r
(
B
)
⩽
n
(2)
{\rm r}(A)+{\rm r(B)\leqslant n}\tag{2}
r(A)+r(B)⩽n(2)
不等式三、如果 A n × n 2 = E A_{n\times n}^2=E An×n2=E,那么 r ( A + E ) + r ( A − E ) = n {\rm r}(A+E)+{\rm r}(A-E)=n r(A+E)+r(A−E)=n
证明一: 由(1)可知:
r ( A + E ) + r ( A − E ) ⩾ r ( A + E − A + E ) = r ( E ) = n {\rm r}(A+E)+{\rm r}(A-E)\geqslant{\rm r}(A+E-A+E)={\rm r}(E)=n r(A+E)+r(A−E)⩾r(A+E−A+E)=r(E)=n
又因为: A 2 = E = E 2 A^2=E=E^2 A2=E=E2 所以:
( A − E ) ( A + E ) = O , (A-E)(A+E)=O, (A−E)(A+E)=O,
由(2)可知:
r
(
A
−
E
)
+
r
(
A
+
E
)
⩽
n
{\rm r}(A-E)+{\rm r}(A+E)\leqslant n
r(A−E)+r(A+E)⩽n
综上:
r
(
A
−
E
)
+
r
(
A
+
E
)
=
n
{\rm r}(A-E)+{\rm r}(A+E)= n
r(A−E)+r(A+E)=n
证明二: 作下列矩阵,并进行分块初等变换
[
A
+
E
O
O
A
−
E
]
→
[
A
+
E
A
−
E
O
A
−
E
]
→
[
A
+
E
−
2
E
O
A
−
E
]
→
[
(
A
+
E
)
−
(
E
)
(
A
+
E
)
−
2
E
1
2
(
A
−
E
)
(
A
+
E
)
A
−
E
]
=
[
0
−
2
E
0
A
−
E
]
\begin{aligned} \begin{bmatrix} A+E&O \\ O& A-E \end{bmatrix} &\xrightarrow{} \begin{bmatrix} A+E&A-E \\ O& A-E \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} A+E&-2E \\ O& A-E \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} (A+E)-(E)(A+E)&-2E \\ \frac{1}{2}(A-E)(A+E)& A-E \end{bmatrix}\\ &=\begin{bmatrix} 0&-2E \\ 0& A-E \end{bmatrix}\end{aligned}
[A+EOOA−E][A+EOA−EA−E][A+EO−2EA−E][(A+E)−(E)(A+E)21(A−E)(A+E)−2EA−E]=[00−2EA−E]
r ( A + E ) + r ( A − E ) = r [ A + E O O A − E ] = r [ 0 − 2 E 0 A − E ] = n {\rm r}(A+E)+{\rm r}(A-E)={\rm r}\begin{bmatrix} A+E&O \\ O& A-E \end{bmatrix}={\rm r}\begin{bmatrix} 0&-2E \\ 0& A-E \end{bmatrix}=n r(A+E)+r(A−E)=r[A+EOOA−E]=r[00−2EA−E]=n
不等式四、如果 A n × n 2 = A A_{n\times n}^2=A An×n2=A,证明 r ( A ) + r ( A − E ) = n {\rm r}(A)+{\rm r}(A-E)=n r(A)+r(A−E)=n
证明一: 由不等式(1)
r ( A − E ) + r ( A ) ⩾ r ( E ) = n {\rm r}(A-E)+{\rm r}(A)\geqslant {\rm r}(E)=n r(A−E)+r(A)⩾r(E)=n
由题 ( A − E ) A = O (A-E)A=O (A−E)A=O ,由不等式(2),得
r ( A − E ) + r ( A ) ⩽ n {\rm r}(A-E)+{\rm r}(A)\leqslant n r(A−E)+r(A)⩽n
综上:
r
(
A
−
E
)
+
r
(
A
)
=
n
{\rm r}(A-E)+{\rm r}(A)= n
r(A−E)+r(A)=n
证明一: 作下列矩阵,作分块初等变换
[
A
−
E
O
O
A
]
→
[
A
−
E
A
O
A
]
→
[
A
−
E
E
O
A
]
→
[
(
A
−
E
)
A
E
O
A
]
→
[
O
E
O
A
]
\begin{aligned} \begin{bmatrix} A-E&O\\ O&A \end{bmatrix} &\xrightarrow{} \begin{bmatrix} A-E&A\\ O&A \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} A-E&E\\O&A \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} (A-E)A&E\\O&A \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} O&E\\O&A \end{bmatrix} \end{aligned}
[A−EOOA][A−EOAA][A−EOEA][(A−E)AOEA][OOEA]
所以,
r
(
A
−
E
)
+
r
(
A
)
=
r
[
A
−
E
O
O
A
]
=
r
[
O
E
O
A
]
=
n
{\rm r}(A-E)+{\rm r}(A)={\rm r}\begin{bmatrix} A-E&O\\ O&A \end{bmatrix}={\rm r}\begin{bmatrix} O&E\\O&A \end{bmatrix}=n
r(A−E)+r(A)=r[A−EOOA]=r[OOEA]=n
不等式五、设 A = ( a i j ) s × n , B = ( b i j ) n × m A=(a_{ij})_{s\times n},B=(b_{ij})_{n\times m} A=(aij)s×n,B=(bij)n×m,证明: r ( A B ) ⩾ r ( A ) + r ( B ) − n {\rm r}(AB)\geqslant {\rm r}(A)+{\rm r}(B)-n r(AB)⩾r(A)+r(B)−n
WARNING:证明一好像有问题,懒得改了,请读者自辩。或者可以直接看证明二
证明一: 利用初等变换得到矩阵的标准形.设 r ( A ) = r 1 , r ( B ) = r 2 , r ( A B ) = r , {\rm r}(A)=r_1,{\rm r}(B)=r_2,{\rm r}(AB)=r, r(A)=r1,r(B)=r2,r(AB)=r, 则存在可逆矩阵 P , Q P,Q P,Q 使
P A Q = [ E r 1 O O O ] n × n PAQ=\begin{bmatrix} E_{r1}&O\\ O&O\end{bmatrix}_{n\times n} PAQ=[Er1OOO]n×n
又设 ( Q − 1 B ) n × m = [ ( B 1 ) r 1 × m ( ( B 2 ) ( n − r 1 ) × m ] . (Q^{-1}B)_{n\times m}=\begin{bmatrix} (B_1)_{r_1\times m}\\((B_2)_{(n-r_1)\times m} \end{bmatrix}. (Q−1B)n×m=[(B1)r1×m((B2)(n−r1)×m].因 P , Q P,Q P,Q 可逆,故有:
r = r ( A B ) = r ( P A Q Q − 1 B ) r={\rm r} (AB)={\rm r}(PAQQ^{-1}B) r=r(AB)=r(PAQQ−1B)
计算
P A Q Q − 1 B = [ E r 1 O O O ] [ ( B 1 ) r 1 × m ( B 2 ) ( n − r 1 ) × m ] = [ B 1 O ] PAQQ^{-1}B=\begin{bmatrix}E_{r_1}&O\\O&O\\\end{bmatrix}\begin{bmatrix}(B_1)_{r_1\times m}\\(B_2)_{(n-r_1)\times m}\end{bmatrix}=\begin{bmatrix}B_1\\O\end{bmatrix} PAQQ−1B=[Er1OOO][(B1)r1×m(B2)(n−r1)×m]=[B1O]
得到 r ( A B ) = r = r ( ( B 1 ) r × m ) . {\rm r}(AB)=r={\rm r}((B_1)_{r\times m}). r(AB)=r=r((B1)r×m). 又由
r ( Q − 1 B ) = r 2 = r [ B 1 B 2 ] . {\rm r}(Q^{-1}B)=r_2={\rm r}\begin{bmatrix}B_1\\B_2\end{bmatrix}. r(Q−1B)=r2=r[B1B2].
又
r + r ( B 2 ) = r ( B 1 ) + r ( B 2 ) ⩽ r [ B 1 B 2 ] = r 2 r+{\rm r}(B_2)={\rm r}(B_1)+{\rm r}(B_2)\leqslant {\rm r}\begin{bmatrix}B_1\\B_2\end{bmatrix}=r_2 r+r(B2)=r(B1)+r(B2)⩽r[B1B2]=r2
得到:
r + r ( B 2 ) ⩽ r 2 r+{\rm r}(B_2)\leqslant r_2 r+r(B2)⩽r2
所以 r 2 − r ⩾ r ( ( B 2 ) ( n − r 1 ) × m ) ⩾ n − r 1 r_2-r\geqslant {\rm r}((B_2)_{(n-r_1)\times m}) \geqslant n-r_1 r2−r⩾r((B2)(n−r1)×m)⩾n−r1
最终得到
r ⩾ r 1 + r 2 − n r\geqslant r_1+r_2-n r⩾r1+r2−n
证明二:
C = [ E n O O ( A B ) s × m ] → [ E O A A B ] → [ E O A A B ] → [ E − B A O ] → [ − B E O A ] \begin{aligned}C=\begin{bmatrix}E_n&O\\O&(AB)_{s\times m}\end{bmatrix}&\xrightarrow{}\begin{bmatrix}E&O\\A&AB\end{bmatrix}\\ &\xrightarrow{}\begin{bmatrix}E&O\\A&AB\end{bmatrix}\\ &\xrightarrow{}\begin{bmatrix}E&-B\\A&O\end{bmatrix}\\ &\xrightarrow{}\begin{bmatrix}-B&E\\O&A\end{bmatrix}\\ \end{aligned} C=[EnOO(AB)s×m][EAOAB][EAOAB][EA−BO][−BOEA]
于是
r ( C ) = n + r ( A B ) = n + r {\rm r}(C)=n+{\rm r}(AB)=n+r r(C)=n+r(AB)=n+r
且
r ( C ) = r [ − B E O A ] {\rm r}(C)={\rm r}\begin{bmatrix}-B&E\\O&A\end{bmatrix} r(C)=r[−BOEA]
又因为 [ − B E O A ] \begin{bmatrix}-B&E\\O&A\end{bmatrix} [−BOEA] 中可以去到一个 r 1 + r 2 r_1+r_2 r1+r2 阶子式
∣ − M ∗ O N ∣ ≠ 0 \begin{vmatrix}-M&*\\O&N\end{vmatrix}\ne 0 −MO∗N =0
其中 ∣ M ∣ |M| ∣M∣ 是 B B B 的最高阶 ( r 2 ) (r_2) (r2)阶非零子式, ∣ N ∣ |N| ∣N∣ 是 A A A 的最高阶 ( r 1 ) (r_1) (r1)阶非零子式.
所以
r [ − B E O A ] ⩾ r 1 + r 2 {\rm r}\begin{bmatrix}-B&E\\O&A\end{bmatrix}\geqslant r_1+r_2 r[−BOEA]⩾r1+r2
所以 n + r ⩾ r 1 + r 2 n+r\geqslant r_1+r_2 n+r⩾r1+r2
不等式六、任给 A , B , C ∈ P n × n A,B,C\in P^{n\times n} A,B,C∈Pn×n,证明 r ( A B ) + r ( B C ) ⩽ r ( A B C ) + r ( B ) {\rm r}(AB)+{\rm r}(BC)\leqslant{\rm r}(ABC)+{\rm r}(B) r(AB)+r(BC)⩽r(ABC)+r(B)
证明:
[
B
O
O
A
B
C
]
→
[
B
A
B
O
A
B
C
]
→
[
B
A
B
−
B
C
O
]
→
[
B
C
O
B
A
B
]
\begin{aligned} \begin{bmatrix} B&O\\ O&ABC\end{bmatrix}&\xrightarrow{} \begin{bmatrix} B&AB\\ O&ABC \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} B&AB\\ -BC&O \end{bmatrix}\\ &\xrightarrow{} \begin{bmatrix} BC&O\\ B&AB \end{bmatrix}\\ \end{aligned}
[BOOABC][BOABABC][B−BCABO][BCBOAB]
所以
r
(
B
)
+
r
(
A
B
C
)
=
r
(
[
B
O
O
A
B
C
]
)
=
r
(
[
B
C
O
B
A
B
]
)
⩾
r
(
[
B
C
O
O
A
B
]
)
=
r
(
B
C
)
+
r
(
A
B
)
\begin{aligned} \mathrm{r}(B)+\mathrm{r}(ABC)&= \mathrm{r}(\begin{bmatrix} B&O\\ O&ABC\end{bmatrix})\\ &= \mathrm{r}(\begin{bmatrix} BC&O\\ B&AB \end{bmatrix})\\ &\geqslant\mathrm{r}(\begin{bmatrix} BC&O\\ O&AB \end{bmatrix})=\mathrm{r}(BC)+\mathrm{r}(AB) \end{aligned}
r(B)+r(ABC)=r([BOOABC])=r([BCBOAB])⩾r([BCOOAB])=r(BC)+r(AB)