ChatGLM作为一个小参数模型,给予了我们在本地部署LLM的条件,接下来我将展示如何使用python对本地部署的ChatGLM模型进行API调用
对于如何部署本地ChatGLM模型我们可以访问本地化部署大语言模型 ChatGLM
接下来我首先分享api调用的测试代码:
import time
import requests
# 测试GPU运行是否成功
def test_function_1():
import torch
print(torch.cuda.is_available())
# 测试成功
# 测试api相应是否无误
def test_function_2():
# 发送POST请求
url = "http://localhost:8000" # API的地址
data = {
"prompt": "What is your name?",
"history": [], # 历史对话,如果有的话,这里初始化为一个空列表
"max_length": 2048, # 最大生成长度
"top_p": 0.7, # Top-p采样参数
"temperature": 0.95 # 温度参数
}
response = requests.post(url, json=data)
# 解析响应
if response.status_code == 200:
answer = response.json()
print("Response:", answer["response"])
print("History:", answer["history"])
print("Status:", answer["status"])
print("Time:", answer["time"])
else:
print("Request failed:", response.text)
if __name__ == '__main__':
# test_function_1()
time_start = time.time()
test_function_2()
time_end=time.time()
print("测试时间"+str(time_end-time_start))
- test_function_1():测试python与CUDA能否运行,如果为False,需要去pytorch官网下载电脑显卡驱动对应的pytorch,高显卡驱动是可以向下兼容
- test_function_2():测试python的request请求是否被正确响应
在这里就遇到问题了(电脑的防火墙使request请求无法响应),搜索相关资料后找到了解决办法:
我们需要确保以下几点:
- 确保服务器正在指定的地址(0.0.0.0)和端口(8000)上运行,并且没有出现问题。
- 检查防火墙设置,确保允许从你的客户端连接到服务器的地址和端口。
- 确保服务器端代码没有错误,并且正在正确地侦听指定的地址和端口。
发现问题出现在2上,接下来提供解决方法:
在 Windows 上,通过以下步骤检查和配置防火墙设置:
-
打开 Windows Defender 防火墙设置:
- 在 Windows 搜索框中输入“防火墙”,然后选择“Windows Defender 防火墙”。
-
配置入站规则:
- 在左侧面板中,选择“高级设置”。
- 在“高级设置”窗口中,选择“入站规则”选项。
-
添加新规则:
- 在右侧面板中,选择“新建规则”。
- 在出现的向导中,选择“端口”选项,然后点击“下一步”。
-
指定端口和协议:
- 在“特定本地端口”中输入你的服务器端口号(例如,8000)。
- 在“特定远程端口”中也输入相同的端口号,表示你要允许的远程连接端口。
- 选择协议类型(通常是 TCP)。
-
选择允许连接:
- 在下一步中选择“允许连接”。
-
指定连接的范围:
- 在“对哪些网络连接应用此规则”中,选择“任何网络”(或者根据你的需要进行选择)。
-
指定规则的名称:
- 输入规则的名称和可选的描述信息,然后点击“完成”。
我们同时需要更改相应端口的出站规则
接下来运行就没有问题了
接下来我展示一个数据分析的例子代码
from http import HTTPStatus
import dashscope
import time
import requests
dashscope.api_key = ''
def get_product(path, index=0):
# 此处index控制读取文件的起始位置,默认为0
l = []
with open(path, 'r', encoding='utf-8') as fp:
for line in fp.readlines():
company, text = line.strip().split('\t')
l.append((company, text))
return l[index:]
def call_with_prompt(company, text):
prompt='''请给出产品名称"{}"的多级产品类别。
多级产品类别使用##分隔
示例1:
产品名称:智能冰箱控制器
多级产品类别:家用电器##生活电器##冰箱控制器
示例2:
产品名称:滚筒洗衣机
多级产品类别:家用电器##生活电器##洗衣机
'''.format(text)
url = "http://localhost:8000" # API的地址
data = {
"prompt": prompt,
"history": [], # 历史对话,如果有的话,这里初始化为一个空列表
"max_length": 2048, # 最大生成长度
"top_p": 0.7, # Top-p采样参数
"temperature": 0.95 # 温度参数
}
response = requests.post(url, json=data)
# 解析响应
if response.status_code == 200:
answer = response.json()
return answer
else:
# 请记录下所有获取失败的文本
print(company + '\t' + text)
if __name__ == '__main__':
print("============================start============================")
N = 1
intput_path = '1.txt'
output_path = 'result.txt'
index = 0
time_start = time.time()
for company, text in get_product(intput_path, index):
answer = call_with_prompt(company, text)
with open(output_path, 'a', encoding='utf-8') as fp:
fp.write('{}\t{}\t{}\n'.format(company, text, answer['response'].replace('\n', '$').replace('\t', '@')))
time_end = time.time()
all_time = time_end - time_start
print(all_time)
print("============================end============================")