Multi-objective training of Generative Adversarial Networks with multiple discriminators-论文翻译

具有多个鉴别器的生成对抗性网络的多目标训练

摘要

最近的文献已经证明,通过使用一组鉴别器来训练生成对抗性网络有很好的结果,而传统的游戏涉及一个生成者对抗单个对手。这种方法对一些简单的损失合并进行单目标优化,例如算术平均。在这项工作中,我们通过将不同模型提供的损失的多次最小化定义为多目标优化问题,重新审视了多重鉴别器设置。具体来说,我们在大量不同的数据集上评估了多重梯度下降和超体积最大化算法的性能。此外,我们认为,先前提出的方法和超体积最大化都可以被视为多重梯度下降的变化,其中可以有效地计算更新方向。我们的结果表明,与以前的方法相比,超体积最大化在样本质量和计算成本之间表现出更好的折衷。

1.简介

生成对抗性网络(GANs)(Goodfellow et al.,2014)提供了一种新的生成建模方法,使用博弈论训练方案隐式学习给定的概率密度。在GAN架构出现之前,逼真的生成建模仍然难以捉摸。尽管提供了前所未有的现实主义,但GAN培训仍然充满了稳定性问题。通常报道的缺点包括鉴别器提供的有用梯度信号的缺乏,以及模式崩溃,即发生器样本缺乏多样性。
近年来,为了在GAN框架内克服训练不稳定性1,人们投入了大量的研究工作。一些架构,如BEGAN(Bertelot et al.,2017),已经应用自动编码器作为鉴别器,并提出了一种新的损失函数来帮助稳定训练。反过来,TTUR(Heusel et al.,17)等方法试图定义单独的时间表来更新生成器和鉴别器。PacGAN算法(Lin et al.,2017)提出修改鉴别器的架构,以接受m个级联样本作为输入。这些样本被联合分类为真实样本或生成样本,作者表明,这种方法可以帮助加强样本多样性。此外,SNGAN中的鉴别器参数引入了频谱归一化(Miyato et al.,2018),旨在确保Lipschitz连续性,经验表明,这可以在多组超参数中产生高质量的样本。或者,最近工作已经提出用多个鉴别器来解决GANs的不稳定性问题。Neyshabur等人(2017)提出了一种GAN变体,其中一个生成器针对一组鉴别器进行训练,其中每个鉴别器看到输入的固定随机投影。先前的工作,包括(Durugkar等人,2016;Doan等人,2018)也探索了使用多种鉴别器进行训练。

在本文中,我们在Neyshabur等人(2017)引入的框架的基础上,提出重新制定平均损失最小化,以进一步稳定GAN训练。具体而言,我们建议将每个鉴别器提供的损失信号视为一个独立的目标函数。为了实现这一点,我们同时使用多目标优化技术将损失降至最低。也就是说,我们利用了文献中先前介绍的方法,如多重梯度下降(MGD)算法(Désidéri,2012)。然而,由于在大型神经网络的情况下,MGD的成本高得令人望而却步,我们建议使用更有效的替代方案,例如在固定的、共享的损耗上限(我们将其称为最低点η*)和每个组件损耗之间定义的区域中最大化超容。
与Neyshabur等人(2017)的方法不同,在该方法中,当训练生成器时,平均损失被最小化,超容量最大化(HV)优化了加权损失,并且生成器的训练将自适应地将更大的重要性分配给来自其表现不佳的鉴别器的反馈。

在MNIST上进行的实验表明,与平均损失最小化或GMAN的方法(低质量和成本)和MGD(高质量和高成本)相比,HV在计算成本与样本质量的权衡方面表现出良好的折衷。此外,还研究了对引入的超参数的敏感性,结果表明,增加鉴别器的数量会增加生成器的鲁棒性以及样本质量和多样性。在CIFAR-10上的实验表明,所描述的方法在定量评估方面产生了更高质量的生成器样本。此外,随着鉴别器数量的增加,图像质量和样本多样性再次得到持续改善。

总之,我们的主要贡献如下:
1.我们通过将多鉴别器GAN训练框架放在多目标优化的背景下,为其提供了一个新的视角,并得出了先前对GAN变化的研究与MGD的相似之处,MGD通常被用作多目标优化中的通用求解器。
2.我们提出了一种训练多鉴别器GANs的新方法:超体积最大化,该方法通过损失来衡量每个鉴别器的梯度贡献。

2.准备工作

在本节中,我们提供了一些来自先前文献的关于多目标优化的定义,这些定义将在以下部分中有用。粗体符号用于表示向量值变量。

多目标问题:
多目标优化问题
其中K是目标数,Ω是变量空间,x=[x1,x2,…,xn]T∈Ω是决策向量或问题的可能解。F:Ω→ RK是一组K目标函数,将n维变量空间映射到K维目标空间。
帕累托优势。设x1和x2是两个决策向量。x1被称为支配x2(用x1≺x2表示)当且仅当对于所有i∈{1,2,…,K}fi(x1)≤fi(x2),并且对于某些j∈{1,2,…,K&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值