剪切应力张量

剪切应力方程

对于剪切应力张量 τ ⃗ \vec \tau τ ,其九个分量定义如下:
在这里插入图片描述
其中,

  • κ \kappa κ -体积粘度,这种粘度对于稠密的气体和液体并不重要,在许多文献中被忽略了;
  • μ \mu μ-动力粘度;
  • λ \lambda λ- 膨胀粘度(dilatation term),大小为 2 3 μ \frac23\mu 32μ.

根据N-S方程,有:
∂ ( ρ U ) ∂ t + ∇ ⋅ ( ρ U U ) = − ∇ ⋅ τ − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}+\nabla \cdot {(\rho\mathbf U \mathbf U ) }=-\nabla \cdot \mathbf \tau -\nabla p+\rho \mathbf g t(ρU)+(ρUU)=τp+ρg
对于各向同性流体,形变率 D \mathbf D D:
在这里插入图片描述
τ \tau τRHS的第一项的负号与剪切应力张量前面的负号相互抵消,令其变为正值):

在这里插入图片描述
此时, λ = − 2 3 μ \lambda=-\frac23\mu λ=32μ 。这里,我们令 κ \kappa κ=0,则:

在这里插入图片描述
若将压力梯度项放入剪切应力张量中,可得到柯西应力张量(Cauchy stress tensor) σ \sigma σ:

在这里插入图片描述

可压缩流

对于可压缩流,连续性方程为:
∂ ρ ∂ t + ∇ ⋅ ( ρ U ) = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf U)=0 tρ+(ρU)=0
拆分为:
在这里插入图片描述
将剪切应力 τ \tau τ引入,则:
τ = 2 μ D − 2 3 μ ( ∇ ⋅ U ) I = 2 μ D − 2 3 μ ( − 1 ρ [ ∂ ρ ∂ t + U ⋅ ∇ ρ ] ) I ⏟ ‘ 膨 胀 粘 度 项 ‘ \tau=2\mu \mathbf D-\frac23\mu(\nabla \cdot \mathbf U)\mathbf I\\[2ex] \qquad \qquad\qquad\quad=2\mu \mathbf D \underbrace{ -\frac23\mu \left(-\frac 1\rho[\frac{\partial \rho}{\partial t}+\mathbf U\cdot \nabla\rho]\right) \mathbf I }_{`膨胀粘度项`} τ=2μD32μ(U)I=2μD 32μ(ρ1[tρ+Uρ])I
该项主要与体积的膨胀和压缩有关。

不可压缩流

对于不可压缩流体来讲, ρ = c o n s t a n t \rho=constant ρ=constant,膨胀粘度项可忽略。方程两边同时除以密度,有:

∂ U ∂ t + ∇ ⋅ ( U U ) = ∇ ⋅ τ ρ − ∇ p ρ + g \frac{\partial \mathbf U}{\partial t}+\nabla \cdot {(\mathbf U \mathbf U ) }=\nabla \cdot \frac { \tau}{ \rho}-\nabla \frac p{\rho}+ \mathbf g tU+(UU)=ρτρp+g
p = p ρ p=\frac p \rho p=ρp(运动压力), τ = τ ρ \tau=\frac{\tau}{\rho} τ=ρτ,
∂ U ∂ t + ∇ ⋅ ( U U ) = ∇ ⋅ τ − ∇ p + g \frac{\partial \mathbf U}{\partial t}+\nabla \cdot {(\mathbf U \mathbf U ) }=\nabla\cdot {\mathbf \tau} -\nabla p+ \mathbf g tU+(UU)=τp+g

此时,
τ = 2    ν D \tau=2\;\nu \mathbf D τ=2νD

其散度项

∇ ⋅ τ = ∇ ⋅ [ ν ( ∇ U + ( ∇ U ) T ) ‾ ] = ∇ ⋅ ( ν ∇ U ) + ∇ U ⋅ ∇ ν \nabla\cdot\tau=\nabla\cdot\left[\nu\underline{(\nabla\mathbf U+(\nabla\mathbf U)^T)}\right]=\nabla\cdot(\nu\nabla\mathbf U)+\nabla \mathbf U\cdot\nabla \nu τ=[ν(U+(U)T)]=(νU)+Uν

带下划线的项产生张量。若动力粘度为常量,则:

∇ ⋅ τ = ∇ ⋅ ( ν ∇ U ) \nabla\cdot\tau=\nabla\cdot(\nu\nabla\mathbf U) τ=(νU)

可通过连续性方程简化。我们得到了拉普拉斯方程(泊松):

在这里插入图片描述

参考:
Tobias Holzmann,Mathematics, Numerics, Derivations and OpenFOAM.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值