剪切应力张量

剪切应力方程

对于剪切应力张量 τ ⃗ \vec \tau τ ,其九个分量定义如下:
在这里插入图片描述
其中,

  • κ \kappa κ -体积粘度,这种粘度对于稠密的气体和液体并不重要,在许多文献中被忽略了;
  • μ \mu μ-动力粘度;
  • λ \lambda λ- 膨胀粘度(dilatation term),大小为 2 3 μ \frac23\mu 32μ.

根据N-S方程,有:
∂ ( ρ U ) ∂ t + ∇ ⋅ ( ρ U U ) = − ∇ ⋅ τ − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}+\nabla \cdot {(\rho\mathbf U \mathbf U ) }=-\nabla \cdot \mathbf \tau -\nabla p+\rho \mathbf g t(ρU)+(ρUU)=τp+ρg
对于各向同性流体,形变率 D \mathbf D D:
在这里插入图片描述
τ \tau τRHS的第一项的负号与剪切应力张量前面的负号相互抵消,令其变为正值):

在这里插入图片描述
此时, λ = − 2 3 μ \lambda=-\frac23\mu λ=32μ 。这里,我们令 κ \kappa κ=0,则:

在这里插入图片描述
若将压力梯度项放入剪切应力张量中,可得到柯西应力张量(Cauchy stress tensor) σ \sigma σ:

在这里插入图片描述

可压缩流

对于可压缩流,连续性方程为:
∂ ρ ∂ t + ∇ ⋅ ( ρ U ) = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf U)=0 tρ+(ρU)=0
拆分为:
在这里插入图片描述
将剪切应力 τ \tau τ引入,则:
τ = 2 μ D − 2 3 μ ( ∇ ⋅ U ) I = 2 μ D − 2 3 μ ( − 1 ρ [ ∂ ρ ∂ t + U ⋅ ∇ ρ ] ) I ⏟ ‘ 膨 胀 粘 度 项 ‘ \tau=2\mu \mathbf D-\frac23\mu(\nabla \cdot \mathbf U)\mathbf I\\[2ex] \qquad \qquad\qquad\quad=2\mu \mathbf D \underbrace{ -\frac23\mu \left(-\frac 1\rho[\frac{\partial \rho}{\partial t}+\mathbf U\cdot \nabla\rho]\right) \mathbf I }_{`膨胀粘度项`} τ=2μD32μ(U)I=2μD 32μ(ρ1[tρ+Uρ])I
该项主要与体积的膨胀和压缩有关。

不可压缩流

对于不可压缩流体来讲, ρ = c o n s t a n t \rho=constant ρ=constant,膨胀粘度项可忽略。方程两边同时除以密度,有:

∂ U ∂ t + ∇ ⋅ ( U U ) = ∇ ⋅ τ ρ − ∇ p ρ + g \frac{\partial \mathbf U}{\partial t}+\nabla \cdot {(\mathbf U \mathbf U ) }=\nabla \cdot \frac { \tau}{ \rho}-\nabla \frac p{\rho}+ \mathbf g tU+(UU)=ρτρp+g
p = p ρ p=\frac p \rho p=ρp(运动压力), τ = τ ρ \tau=\frac{\tau}{\rho} τ=ρτ,
∂ U ∂ t + ∇ ⋅ ( U U ) = ∇ ⋅ τ − ∇ p + g \frac{\partial \mathbf U}{\partial t}+\nabla \cdot {(\mathbf U \mathbf U ) }=\nabla\cdot {\mathbf \tau} -\nabla p+ \mathbf g tU+(UU)=τp+g

此时,
τ = 2    ν D \tau=2\;\nu \mathbf D τ=2νD

其散度项

∇ ⋅ τ = ∇ ⋅ [ ν ( ∇ U + ( ∇ U ) T ) ‾ ] = ∇ ⋅ ( ν ∇ U ) + ∇ U ⋅ ∇ ν \nabla\cdot\tau=\nabla\cdot\left[\nu\underline{(\nabla\mathbf U+(\nabla\mathbf U)^T)}\right]=\nabla\cdot(\nu\nabla\mathbf U)+\nabla \mathbf U\cdot\nabla \nu τ=[ν(U+(U)T)]=(νU)+Uν

带下划线的项产生张量。若动力粘度为常量,则:

∇ ⋅ τ = ∇ ⋅ ( ν ∇ U ) \nabla\cdot\tau=\nabla\cdot(\nu\nabla\mathbf U) τ=(νU)

可通过连续性方程简化。我们得到了拉普拉斯方程(泊松):

在这里插入图片描述

参考:
Tobias Holzmann,Mathematics, Numerics, Derivations and OpenFOAM.

<think>好的,用户的问题是“如何在计算力学中构造应力张量矩阵”,需要示例代码或公式推导。首先,我需要回忆应力张量的基本概念和构造方法。应力张量在连续介质力学中非常重要,通常分为柯西应力张量、第一和第二类Piola-Kirchhoff应力张量等。用户可能是在进行有限元分析或材料模拟时需要构造这个矩阵,所以应该从基本公式和步骤入手。 首先,确定用户的应用场景。计算力学中构造应力张量可能涉及本构模型,比如线弹性、塑性等。常见的线弹性情况下,应力张量可以通过胡克定律与应变张量相关联。因此,构造应力张量通常需要应变张量和材料参数(如弹性模量、泊松比)。 接下来,公式推导部分。柯西应力张量σ可以表示为σ = C : ε,其中C是四阶弹性张量,ε是应变张量。对于各向同性材料,可以简化为σ = 2με + λ tr(ε)I,其中μ和λ是拉梅常数。这里需要将张量展开为矩阵形式,可能以Voigt记号简化,将应变张量的六个独立分量转换为向量,弹性矩阵则变为6x6矩阵。 然后,示例代码部分。用户可能需要用Python或类似语言实现。使用numpy库来创建矩阵,根据应变分量和材料参数计算应力分量。例如,给定ε_xx, ε_yy等,代入公式计算σ_xx, σ_xy等,组合成3x3的应力矩阵。 还需要注意用户提供的引用内容,特别是引用[3]中提到的柯西应力张量的分解,即σ = -pI + τ,其中τ是剪切力张量。这可能涉及到静水压力和偏应力部分,在构造应力张量时可能需要考虑不同的情况,比如流体和固体的不同处理方式。 用户可能存在的深层需求是理解如何将理论公式转化为实际的数值计算步骤,尤其是在编程实现时如何处理张量的分量和矩阵操作。因此,解释清楚每个步骤的数学推导和代码对应的部分很重要。 另外,检查是否需要区分不同的应力张量类型,比如柯西应力张量和PK应力张量的不同应用场景。但用户的问题集中在构造应力张量矩阵,可能默认是柯西应力张量,所以应聚焦于此。 最后,确保公式使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并且代码块正确展示。同时,生成的相关问题需要与主题紧密相关,比如材料参数的影响、张量的转换等。</think>在计算力学中构造应力张量矩阵需要根据材料本构关系和应变状态进行数学建模,以下是构造柯西应力张量的详细步骤和示例: ### 一、应力张量构造原理 对于各向同性线弹性材料,柯西应力张量与应变张量的关系为: $$ \sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} $$ 其中: - $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$ 为拉梅第一参数 - $\mu = \frac{E}{2(1+\nu)}$ 为剪切模量(拉梅第二参数) - $\varepsilon_{kk} = \varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}$ 是体积应变 ### 二、矩阵形式推导 将三维应力分量展开为矩阵形式: $$ \sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \lambda(\varepsilon_{xx}+\varepsilon_{yy}+\varepsilon_{zz}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 2\mu \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix} $$ ### 三、Python实现示例 ```python import numpy as np def construct_stress_tensor(E, nu, strain_tensor): """ 构造柯西应力张量矩阵 参数: E - 弹性模量 (MPa) nu - 泊松比 strain_tensor - 3x3应变张量矩阵 """ mu = E / (2*(1 + nu)) lam = E*nu / ((1 + nu)*(1 - 2*nu)) # 计算体积应变 trace_epsilon = np.trace(strain_tensor) # 构造单位矩阵 I = np.eye(3) # 计算应力张量 stress = lam * trace_epsilon * I + 2*mu * strain_tensor return stress # 示例输入 E = 200e3 # 钢材弹性模量(MPa) nu = 0.3 strain = np.array([[0.001, 0.0002, 0], [0.0002, 0.0005, 0.0001], [0, 0.0001, -0.0003]]) stress_matrix = construct_stress_tensor(E, nu, strain) print("柯西应力张量矩阵(MPa):\n", stress_matrix) ``` ### 四、张量转换关系 当需要转换坐标系时,应力张量遵循二阶张量转换法则[^2]: $$ T'_{ij} = a_{ik}a_{jl}T_{kl} \quad 或 \quad \mathbf{T}' = \mathbf{A}\mathbf{T}\mathbf{A}^T $$ 其中$\mathbf{A}$是坐标转换矩阵。 ### 五、特殊处理 对于非弹性材料,需要考虑: 1. 塑性变形时的屈服准则(如Von Mises准则) 2. 粘弹性材料的时变特性 3. 各向异性材料的本构矩阵构造 ### 六、验证方法 建议通过以下方式验证结果: 1. 检查对称性:$\sigma_{xy} = \sigma_{yx}$ 2. 验证本构方程:$\varepsilon = \frac{1+\nu}{E}\sigma - \frac{\nu}{E}(\text{tr}\sigma)\mathbf{I}$ 3. 平衡方程验证:$\nabla\cdot\sigma + \mathbf{b} = 0$
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值