张量分析学习笔记四——张量的基本运算法则

个人专栏—张量分析专栏

  1. 张量分析学习笔记一——张量分析基本概念 张量分析学习笔记一——张量分析基本概念(https://blog.csdn.net/Zh531445436/article/details/136374766?spm=1001.2014.3001.5502)
  2. 张量分析学习笔记二——克罗内克符号与置换符号 张量分析学习笔记二——克罗内克符号与置换符号
  3. 张量分析学习笔记三——张量积 张量分析学习笔记三——张量积
  4. 张量分析学习笔记四——张量的基本运算法则 张量分析学习笔记四——张量的基本运算法则


张量的运算法则是基于张量的代数性质和运算规则建立的,可以帮助简化张量计算,并提供统一的方法处理张量运算。

加法运算 \color{green}加法运算 加法运算

  • $\mathbf{C}=\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} $

  • 分量表示形式为:$ C_{ij}=A_{ij}+B_{ij} $

乘法运算 \color{green}乘法运算 乘法运算

  • D = λ A → in   components ( D ) i j = λ ( A ) i j \mathbf{D}=\lambda\mathbf{A}\xrightarrow{\textit{in components}}(\mathbf{D})_{ij}=\lambda(\mathbf{A})_{ij} D=λAin components (D)ij=λ(A)ij

  • ( λ A ) ⋅ v ⃗ = λ ( A ⋅ v ⃗ ) \quad(\lambda\mathbf{A})\cdot\vec{v}=\lambda(\mathbf{A}\cdot\vec{v}) (λA)v =λ(Av )

  • 矩阵表示形式为:
    A = [ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] ⟹ λ A = [ λ A 11 λ A 12 λ A 13 λ A 21 λ A 22 λ A 23 λ A 31 λ A 32 λ A 33 ] \begin{equation*} \mathbf{A}=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \Longrightarrow \lambda\mathbf{A}=\begin{bmatrix} \lambda A_{11} &\lambda A_{12} &\lambda A_{13} \\ \lambda A_{21} &\lambda A_{22} &\lambda A_{23} \\ \lambda A_{31} &\lambda A_{32} &\lambda A_{33} \end{bmatrix} \end{equation*} A= A11A21A31A12A22A32A13A23A33 λA= λA11λA21λA31λA12λA22λA32λA13λA23λA33

点积 \color{green}点积 点积

  • y ⃗ = A ⋅ x ⃗ = ( A j k e ^ j ⊗ e ^ k ) ⋅ ( x l e ^ l ) = A j k x l δ k l e ^ j = A j k x k ⏟ y j e ^ j = y j e ^ j \vec{y}=\mathbf{A}\cdot\vec{x} =(A_{jk}\hat{e}_j\otimes \hat{e}_k)\cdot(x_l\hat{e}_l)=A_{jk}x_l\delta_{kl}\hat{e}_j=\underbrace{A_{jk}x_k}_{y_j}\hat{e}_j=y_j\hat{e}_j y =Ax =(Ajke^je^k)(xle^l)=Ajkxlδkle^j=yj Ajkxke^j=yje^j

  • 张量点积的性质
    A ⋅ ( B + C ) = A ⋅ B + A ⋅ C A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C A 0 = I A 2 = A ⋅ A A 3 = A A A \begin{gather*} \mathbf{A}\cdot(\mathbf{B}+\mathbf{C})=\mathbf{A}\cdot\mathbf{B}+\mathbf{A}\cdot\mathbf{C}\\ \mathbf{A}\cdot(\mathbf{B}\cdot\mathbf{C})=(\mathbf{A}\cdot\mathbf{B})\cdot\mathbf{C}\\ \mathbf{A}^0=\mathbf{I}\\ \mathbf{A}^2=\mathbf{A}\cdot\mathbf{A}\\ \mathbf{A}^3=\mathbf{A}\mathbf{A}\mathbf{A} \end{gather*} A(B+C)=AB+ACA(BC)=(AB)CA0=IA2=AAA3=AAA

  • 对于二阶张量 $\mathbf{A} $和 $\mathbf{B} $,有 $\mathbf{A}\cdot\mathbf{B}\neq\mathbf{B}\cdot\mathbf{A} $

证明:KaTeX parse error: {align*} can be used only in display mode.

双点积 \color{green}双点积 双点积

考虑两个张量 $\mathbf{A}=\vec{c}\otimes\vec{d} $和 $\mathbf{B}=\vec{u}\otimes\vec{v} $之间的双点积有两种, $\mathbf{A}:\mathbf{B} $和 $\mathbf{A}\cdot\cdot\mathbf{B} $。

  • A : B = ( c ⃗ ⊗ d ⃗ ) : ( u ⃗ ⊗ v ⃗ ) = ( c ⃗ ⋅ u ⃗ ) ( d ⃗ ⋅ v ⃗ ) \mathbf{A}:\mathbf{B}= (\vec{c}\otimes\vec{d}):(\vec{u}\otimes\vec{v})=(\vec{c}\cdot\vec{u})(\vec{d}\cdot\vec{v}) A:B=(c d ):(u v )=(c u )(d v )

  • B : A = ( u ⃗ ⊗ v ⃗ ) : ( c ⃗ ⊗ d ⃗ ) = ( u ⃗ ⋅ c ⃗ ) ( v ⃗ ⋅ d ⃗ ) = ( u ⃗ ⋅ c ⃗ ) ( v ⃗ ⋅ d ⃗ ) = ( c ⃗ ⋅ u ⃗ ) ( d ⃗ ⋅ v ⃗ ) = A : B \mathbf{B}:\mathbf{A}=(\vec{u}\otimes\vec{v}):(\vec{c}\otimes\vec{d})=(\vec{u}\cdot\vec{c})(\vec{v}\cdot\vec{d})=(\vec{u}\cdot\vec{c})(\vec{v}\cdot\vec{d}) =(\vec{c}\cdot\vec{u})(\vec{d}\cdot\vec{v})=\mathbf{A}:\mathbf{B} B:A=(u v ):(c d )=(u c )(v d )=(u c )(v d )=(c u )(d v )=A:B

  • 分量表示形式: A : B = ( A i j e ^ i ⊗ e ^ j ) : ( B k l e ^ k ⊗ e ^ l ) = A i j B k l δ i k δ j l = A i j B i j = λ \mathbf{A}:\mathbf{B}=(A_{ij}\hat{e}_i\otimes\hat{e}_j):(B_{kl}\hat{e}_k\otimes\hat{e}_l)=A_{ij}B_{kl}\delta_{ik}\delta{jl}=A_{ij}B_{ij}=\lambda A:B=(Aije^ie^j):(Bkle^ke^l)=AijBklδikδjl=AijBij=λ

  • 双点积的性质

A : B = B : A A : ( B + C ) = A : B + A : C λ ( A : B ) = ( λ A ) : B = A : ( λ B ) \begin{gather*} \mathbf{A}:\mathbf{B}=\mathbf{B}:\mathbf{A}\\ \mathbf{A}:(\mathbf{B}+\mathbf{C})=\mathbf{A}:\mathbf{B}+\mathbf{A}:\mathbf{C}\\ \lambda(\mathbf{A}:\mathbf{B})=(\lambda\mathbf{A}):\mathbf{B}=\mathbf{A}:(\lambda\mathbf{B}) \end{gather*} A:B=B:AA:(B+C)=A:B+A:Cλ(A:B)=(λA):B=A:(λB)

  • ( c ⃗ ⊗ d ⃗ ) ⋅ ⋅ ( u ⃗ ⊗ v ⃗ ) = ( c ⃗ ⋅ v ⃗ ) ( d ⃗ ⋅ u ⃗ ) (\vec{c}\otimes\vec{d})\cdot\cdot(\vec{u}\otimes\vec{v})=(\vec{c}\cdot\vec{v})(\vec{d}\cdot\vec{u}) (c d )(u v )=(c v )(d u )

  • 分量表示形式: A ⋅ ⋅ B = ( A i j e ^ i ⊗ e ^ j ) ⋅ ⋅ ( B k l e ^ k ⊗ e ^ l ) = A i j B k l δ j k δ i l = A i j B j i = γ \mathbf{A}\cdot\cdot\mathbf{B}=(A_{ij}\hat{e}_i\otimes\hat{e}_j)\cdot\cdot(B_{kl}\hat{e}_k\otimes\hat{e}_l)=A_{ij}B_{kl}\delta_{jk}\delta_{il}=A_{ij}B_{ji}=\gamma AB=(Aije^ie^j)(Bkle^ke^l)=AijBklδjkδil=AijBji=γ

示例 \color{green}示例 示例

  1. 三阶张量 $\mathbf{S} $和二阶张量 $\mathbf{B} $的双点积:

S : B = ( c ⃗ ⊗ d ⃗ ⊗ a ⃗ ) : ( u ⃗ ⊗ v ⃗ ) = ( a ⃗ ⋅ v ⃗ ) ( d ⃗ ⋅ u ⃗ ) c ⃗ B : S = ( u ⃗ ⊗ v ⃗ ) : ( c ⃗ ⊗ d ⃗ ⊗ a ⃗ ) = ( u ⃗ ⋅ c ⃗ ) ( v ⃗ ⋅ d ⃗ ) a ⃗ S i j k e ^ i ⊗ e ^ j ⊗ e ^ k : B p q e ^ p ⊗ e ^ = S i j k B p q δ j p δ k q e ^ i = S i j k B j k e ^ i \begin{gather*} \mathbf{S}:\mathbf{B}=(\vec{c}\otimes\vec{d}\otimes\vec{a}):(\vec{u}\otimes\vec{v})=(\vec{a}\cdot\vec{v})(\vec{d}\cdot\vec{u})\vec{c}\\ \mathbf{B}:\mathbf{S}=(\vec{u}\otimes\vec{v}):(\vec{c}\otimes\vec{d}\otimes\vec{a})=(\vec{u}\cdot\vec{c})(\vec{v}\cdot\vec{d})\vec{a}\\ S_{ijk}\hat{e}_i\otimes\hat{e}_j\otimes\hat{e}_k:B_{pq}\hat{e}_p\otimes\hat{e}=S_{ijk}B_{pq}\delta_{jp}\delta_{kq}\hat{e}_i=S_{ijk}B_{jk}\hat{e}_i \end{gather*} S:B=(c d a ):(u v )=(a v )(d u )c B:S=(u v ):(c d a )=(u c )(v d )a Sijke^ie^je^k:Bpqe^pe^=SijkBpqδjpδkqe^i=SijkBjke^i

  1. 四阶张量 $\mathbb{C} $和二阶张量 $\varepsilon $的双点积:

C i j k l e ^ i ⊗ e ^ j ⊗ e ^ k ⊗ e ^ l : ε p q e ^ p ⊗ e ^ q = C i j k l ε p q δ k p δ l q e ^ i ⊗ e ^ j = C i j k l ε p q e ^ i ⊗ e ^ j = σ i j e ^ i ⊗ e ^ j \mathbb{C}_{ijkl}\hat{e}_i\otimes\hat{e}_j\otimes\hat{e}_k\otimes\hat{e}_l:\varepsilon_{pq}\hat{e}_p\otimes\hat{e}_q=\mathbb{C}_{ijkl}\varepsilon_{pq}\delta_{kp}\delta_{lq}\hat{e}_i\otimes\hat{e}_j=\mathbb{C}_{ijkl}\varepsilon_{pq}\hat{e}_i\otimes\hat{e}_j=\sigma_{ij}\hat{e}_i\otimes\hat{e}_j Cijkle^ie^je^ke^l:εpqe^pe^q=Cijklεpqδkpδlqe^ie^j=Cijklεpqe^ie^j=σije^ie^j

  1. 二阶张量 $\mathbf{A} $在笛卡尔坐标系中的张量分量为:

( A ) i j = ( A k l e ^ k ⊗ e ^ l ) : ( e ^ i ⊗ e ^ j ) = e ^ j ⋅ ( A k l e ^ k ⊗ e ^ l ) ⋅ e ^ j = A k l δ k i δ l i = A i j a ⃗ ⋅ A ⋅ b ⃗ = a p e ^ p ⋅ A i j e ^ i ⊗ e ^ j ⋅ b r e ^ r = a p A i j b r δ p i δ j r = a i A i j b j = A i j ( a i b j ) = A : ( a ⃗ ⊗ b ⃗ ) \begin{align*} (\mathbf{A})_{ij}&=(A_{kl}\hat{e}_k\otimes\hat{e}_l):(\hat{e}_i\otimes\hat{e}_j)=\hat{e}_j\cdot(A_{kl}\hat{e}_k\otimes\hat{e}_l)\cdot\hat{e}_j=A_{kl}\delta_{ki}\delta_{li}=A_{ij}\\ \vec{a}\cdot\mathbf{A}\cdot\vec{b}&=a_p\hat{e}_p\cdot A_{ij}\hat{e}_i\otimes\hat{e}_j\cdot b_r\hat{e}_r =a_pA_{ij}b_r\delta_{pi}\delta_{jr}=a_iA_{ij}b_j =A_{ij}(a_ib_j)=\mathbf{A}:(\vec{a}\otimes\vec{b}) \end{align*} (A)ija Ab =(Akle^ke^l):(e^ie^j)=e^j(Akle^ke^l)e^j=Aklδkiδli=Aij=ape^pAije^ie^jbre^r=apAijbrδpiδjr=aiAijbj=Aij(aibj)=A:(a b )

向量积 \color{green}向量积 向量积

  • 二阶张量 $\mathbf{A} $和向量 $\vec{x} $的向量积为

A × x ⃗ = ( A i j e ^ i ⊗ e ^ j ) × ( x k e ^ k ) = ϵ l j k A i j x k e ^ i ⊗ e ^ l \mathbf{A}\times\vec{x}=(A_{ij}\hat{e}_i\otimes\hat{e}_j)\times(x_k\hat{e}_k)=\epsilon_{ljk}A_{ij}x_k\hat{e}_i\otimes\hat{e}_l A×x =(Aije^ie^j)×(xke^k)=ϵljkAijxke^ie^l

  • 向量积的性质
    a ⃗ × ( b ⃗ × c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ = ( b ⃗ ⊗ c ⃗ − c ⃗ ⊗ b ⃗ ) ⋅ a ⃗ a ⃗ × ( b ⃗ × a ⃗ ) = [ ( a ⃗ ⋅ a ⃗ ) − a ⃗ ⊗ a ⃗ ] ⋅ b ⃗ \begin{align*} \vec{a}\times(\vec{b}\times\vec{c})&=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}=(\vec{b}\otimes\vec{c}-\vec{c}\otimes\vec{b})\cdot\vec{a}\\ \vec{a}\times(\vec{b}\times\vec{a})&=[(\vec{a}\cdot\vec{a})-\vec{a}\otimes\vec{a}]\cdot\vec{b} \end{align*} a ×(b ×c )a ×(b ×a )=(a c )b (a b )c =(b c c b )a =[(a a )a a ]b

欢迎对Abaqus感兴趣的朋友们查看:Abaqus-UMAT开发精品书籍及umat子程序学习
在这里插入图片描述

Abaqus非线性粘弹性模型子程序umat——广义MAXWELL粘弹性模型umat解析(朱-王-唐本构模型)

在这里插入图片描述

如果你喜欢以上内容,或者对张量分析学习有兴趣,欢迎收藏关注,博主将持续更新。你的关注、收藏是我持续创作的动力!

  • 27
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研拓展人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值