应力偏张量的物理意义_证明应力是对称张量

本文详细探讨了应力和应变的对称性,这些性质源于动量矩定理。通过数学推导,证明了应力张量和应变张量的对称性,解释了它们如何导致主轴相互垂直。内容涉及弹性动力学方程、柯西公式和高斯定理的应用,为理解材料科学中的基本概念提供了深入的见解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应力的对称性源于动量矩定理,而应变的对称性是天然的

矩阵对称意味着矩阵可以对角化,其特征向量是相互垂直的。因此,应力(应变)对称意味着其应力(应变)主轴是相互垂直的。

关于张量可以参考:

Hsuty:什么是张量(tensor)?​zhuanlan.zhihu.com

关于应变张量可参考:

Hsuty:什么是应变(Strain)​zhuanlan.zhihu.com

证明:

1)动量矩定理为:

.

其中,

.

物理意义:物体动量矩的时间变化率等于外部作用冲量矩之和。

2)由动量矩定理可得:

.

则写成张量指标形式为:

.

3)由弹性动力学方程,

,可得:

.

则:

.

4)由柯西公式(

)可得:

.

5)则由高斯定理(

)可得:

6)则:

.

则:

.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值