数字信号处理 --- 用离散傅里叶变换(循环卷积)实现线性卷积

时域的循环卷积等于频域的离散傅里叶变换,离散傅里叶变换DFT是离散傅里叶级数DFS的一个周期,离散傅里叶级数DFS是对连续时间傅里叶变换CTFT的采样

离散傅里叶级数DFS

         周期为10的方波信号的傅里叶级数,以10为周期向两边无限复制拓展信号的傅里叶级数。

         注意上图中x[n]上面的“~”号,那个就是周期函数的意思。以N为周期的周期信号\tilde{x}[n]在0~N-1这一个周期内等于x[n]。

 离散傅里叶级数DFS的系数是对离散傅里叶变换DFT的采样:

        对一个离散非周期序列x[n]的傅里叶变换采样的结果等于,将x[n]无限周期重复而得到的一个周期信号\tilde{x}[n]的离散傅里叶级数DFS的系数。 

离散傅里叶级数DFS的系数等同于对Z变换单位圆上的采样(傅里叶变换等于z变换单位圆上的值):

         若,周期序列\tilde{x}[n]的周期为N,那么与之对应的对傅里叶变换进行采样的间隔为2Pi/N。


循环卷积circular convolution

        线性卷积:x1和x2分别是两个长度为6的方波信号,x3是他们的线性卷积,线性卷积的长度为L+P-1=11.

        N点的循环卷积:图c和图d分别是线性卷积的结果x3,向左和向右移动6个单位的结果。而,图e和图f,分别是N=6点的循环卷积和N=12点的循环卷积的结果。

        可见,对于N=6点的循环卷积,图e,来说,循环卷积的结果等于b(x3[n]),c(x3[n-N]),d(x3[n+N]),在区间n=0~N-1上的和。此时,循环卷积的点数N<L+P-1。

        而,对于N=12点的循环卷积,图f,来说,循环卷积的结果等于正好等于线性卷积的结果,等于c。此时,循环卷积的点数N>=L+P-1。

         上图说明,对于N个点的循环卷积,当N=L=P时,循环卷积的结果完全不同于线性卷积。当N>=L+P-1时,循环卷积的结果正好等于线性卷积,这时没有发生混叠。但是,对于长度不同的两个信号P<L而言,同样做N=L点的循环卷积,结果会有些不同。

图为两个长度不同的信号的线性卷积,P<L。

 图为L点循环卷积的结果,和原来一样,循环卷积的结果等于a(x3[n]),b(x3[n+L]),c(x3[n-L]),在区间n=0~L-1上的和,因L>P,此时c不再对循环卷积的结果有贡献。


 (全文完) 

作者 --- 松下J27

格言摘抄:

《读书要三到》

朱熹

        “凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,“读书百遍,其义自见”。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急。心既到矣,眼口岂不到乎?”

参考文献(鸣谢):

1,信号与系统 --- 奥本海姆

2,离散时间信号处理 ---奥本海姆

 (*配图与本文无关*) 

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值