什么是混淆矩阵
对于二分类问题而言,结果有以下四种,行表示真实值,列表示预测值。预测正确存在两种情况,预测错误也存在两种情况。
TP:预测正确,预测为真即实际为真
FP:预测错误,预测为真即实际为假
FN:预测错误,预测为假即实际为真
TN:预测正确,预测为假即实际为假
对于多分类问题,混淆矩阵的含义也基本相同,下图以三分类问题为例说明如何计算上述指标。
以猫为例
TP:预测是猫,实际也是猫,从图中可以看到这个值为10。
FP:预测为猫,实际不是猫,从图中可以看出在预测为猫的中有1只是狗、2只是猪,故值为3。
FN:预测不是猫,实际是猫,从图中可以看出18只猫中只有10只被正确预测,故值为8。
TN:预测不是猫,实际也不是猫,值为15+6+4+20=45
其实从上述计算也可以看出,多分类问题可以先对其中某一类进行分析,转换为‘某一类’和‘除该类之外的其余类’的二分类问题。