多分类混淆矩阵详解

⭐️ 前言

在机器学习和数据科学中,混淆矩阵(Confusion Matrix)是一个重要的工具,用于评估分类模型的性能。特别是在多分类问题中,混淆矩阵能够清晰地展示模型在每个类别上的预测结果。以下是对多分类混淆矩阵的详细解释。

在这里插入图片描述

⭐️ 1. 混淆矩阵的基本概念

混淆矩阵是一个N x N的矩阵(N代表类别数量),它的每一行代表一个实际类别,每一列代表一个预测类别。矩阵中的每个元素C[i][j]表示实际为第i类但被预测为第j类的样本数量。

在多分类问题中,混淆矩阵的结构如下:

真实值\预测值Predicted: 0Predicted: 1Predicted: N-1
Actual: 0C[0][0]C[0][1]C[0][N-1]
Actual: 1C[1][0]C[1][1]C[1][N-1]
Actual: N-1C[N-1][0]C[N-1][1]C[N-1][N-1]

⭐️ 2. 混淆矩阵中的重要指标

真正例(True Positives, TP):实际为正例且预测为正例的样本数量,对应矩阵的对角线元素C[i][i]。

假正例(False Positives, FP):实际为负例但预测为正例的样本数量,对应矩阵非对角线上的元素C[i][j](i ≠ j)。

真负例(True Negatives, TN):在多分类问题中通常不直接计算,但在二分类问题中用于表示实际为负例且预测为负例的样本数量。

假负例(False Negatives, FN):实际为正例但预测为负例的样本数量,在多分类问题中,这通常表示被错误分类到其他类别的样本。

在这里插入图片描述

⭐️ 3. 从混淆矩阵计算评估指标

在这里插入图片描述

⭐️ 4. 使用Python计算混淆矩阵和评估指标

在Python中,我们可以使用sklearn.metrics模块来计算混淆矩阵和评估指标。以下是一个简单的示例:

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import load_iris  
from sklearn.svm import SVC  
  
# 加载数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  
  
# 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 训练模型(这里使用SVM作为示例)  
clf = SVC(kernel='linear', C=1, random_state=42)  
clf.fit(X_train, y_train)  
  
# 对测试集进行预测  
y_pred = clf.predict(X_test)  
  
 # 计算混淆矩阵  
cm = confusion_matrix(y_test, y_pred)  
print("Confusion Matrix:")  
print(cm)  
  
# 计算准确率  
accuracy = accuracy_score(y_test, y_pred)  
print("Accuracy:", accuracy)  
  
# 计算每个类别的精准率、召回率和F1分数  
precision = precision_score(y_test, y_pred, average=None)  
recall = recall_score(y_test, y_pred, average=None)  
f1 = f1_score(y_test, y_pred, average=None)  

# 打印每个类别的精准率、召回率和F1分数  
print("Precision per class:", precision)  
print("Recall per class:", recall)  
print("F1 Score per class:", f1)  
  
# 如果你想获得一个全局的评估指标,可以计算它们的平均值
precision_avg = precision_score(y_test, y_pred, average='macro')  # 宏平均  
recall_avg = recall_score(y_test, y_pred, average='macro')  
f1_avg = f1_score(y_test, y_pred, average='macro')  
  
print("Macro average Precision:", precision_avg)  
print("Macro average Recall:", recall_avg)  
print("Macro average F1 Score:", f1_avg)


import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 绘制混淆矩阵  
plt.figure(figsize=(10, 7))  
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')  
plt.xlabel('Predicted')  
plt.ylabel('Truth')  
plt.show()

运行结果如下

Confusion Matrix:
[[10  0  0]
 [ 0  9  0]
 [ 0  0 11]]
Accuracy: 1.0
Precision per class: [1. 1. 1.]
Recall per class: [1. 1. 1.]
F1 Score per class: [1. 1. 1.]
Macro average Precision: 1.0
Macro average Recall: 1.0
Macro average F1 Score: 1.0

混淆矩阵绘制如下

在这里插入图片描述

⭐️ 5. 解读混淆矩阵

在混淆矩阵中,对角线上的值(C[i][i])越大越好,因为它们表示正确分类的样本数量。而非对角线上的值越小越好,因为它们表示错误分类的样本数量。

如果某个类别的TP值很低,而FN值很高,那么说明模型在这个类别上的召回率很低,即模型漏掉了很多这个类别的样本。相反,如果某个类别的FP值很高,而TN值(在多分类问题中不直接计算)相对较低,那么说明模型在这个类别上的精准率很低,即模型错误地将很多其他类别的样本预测为这个类别。

在这里插入图片描述

⭐️ 总结

混淆矩阵是评估多分类模型性能的有力工具。通过计算混淆矩阵和基于它计算出的评估指标(如准确率、精准率、召回率和F1分数),我们可以全面地了解模型在各个类别上的表现,并据此对模型进行优化。此外,混淆矩阵的可视化可以帮助我们更直观地理解模型的性能。

笔者水平有限,若有不对的地方欢迎评论指正!

### Matlab 中混淆矩阵的概念 在 MATLAB 中,混淆矩阵用于展示分类算法性能的一种方式。这种矩阵的每一列代表了预测类别,而每一列中的数值总和则表示被预测为此类别的样本数量;每一行对应于真实标签所属的类别,各行内的值加起来即为该类别下的所有实例数[^3]。 ### 使用 `plotconfusion` 函数绘制混淆矩阵的方法 为了在 MATLAB 中创建并可视化混淆矩阵,可以使用内置函数 `plotconfusion` 来完成这一操作。此命令接受两个参数作为输入:一个是真实的类别标签数组(ground truth),另一个是由模型产生的预测结果数组。这两个数组应当具有相同的长度,并且其元素应能唯一标识各个可能的目标类别[^1]。 #### 正确示例代码如下: ```matlab % 假设 trueLabels 是实际的类别标签, % predictedLabels 则是从某些分类器得到的结果。 trueLabels = categorical({'cat'; 'dog'; 'bird'}); predictedLabels = categorical({'cat'; 'cat'; 'bird'}); figure; plotconfusion(trueLabels, predictedLabels); title('Confusion Matrix Example'); ``` 这段脚本会生成一个图形窗口,在其中展示了给定测试集上分类表现情况的一个表格形式——也就是所谓的“混淆矩阵”。表内不仅包含了各类别之间的匹配关系统计信息,还提供了总体准确性以及其他一些有用的度量指标[^2]。 ### 输出效果说明 当执行上述代码后,将会弹出一个新的图形界面来呈现所构建好的混淆矩阵图表。除了基本的比例分布外,还可以看到额外的信息如召回率(recall)、精确度(precision),以及 F-score 等重要评估标准。这些附加细节有助于更全面地理解模型的表现特性及其潜在偏差所在之处[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥猪猪爸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值