用模拟退火算法求解带约束的二元函数极值问题之二:用MATLAB绘图验证

2 篇文章 0 订阅
2 篇文章 0 订阅

用模拟退火算法求解带约束的二元函数极值问题之二:用MATLAB绘图验证

1.MATLAB代码段

%% I. 清空环境变量
clear all
clc	

%% II. 二元函数绘图
[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);
z = (6*x)./(2 + power(x,2) + power(y,2) + eps) + 5.*sin(x) + 3.*cos(y) + 50;
figure
mesh(x,y,z)
hold on
xlabel('x')
ylabel('y')
zlabel('z')
title('z = 6*x/(2 + x*x + y*y) + 5*sin(x) + 3*cos(y) + 50')

%%
% 1. 标记出最大值点
maxVal = max(z(:));
[maxIndexX,maxIndexY] = find(z == maxVal);
for i = 1:length(maxIndexX)
    plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)), maxVal, 'r*','linewidth',2)
     text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)), maxVal, {['    X: ' num2str(x(maxIndexX(i),maxIndexY(i)))];['    Y: ' num2str(y(maxIndexX(i),maxIndexY(i)))];['    Z: ' num2str(maxVal)]})
    hold on
end

%%
% 1. 标记出最小值点
minVal = min(z(:));
[minIndexX,minIndexY] = find(z == minVal);
for i = 1:length(minIndexX)
    plot3(x(minIndexX(i),minIndexY(i)),y(minIndexX(i),minIndexY(i)), minVal, 'r*','linewidth',2)
     text(x(minIndexX(i),minIndexY(i)),y(minIndexX(i),minIndexY(i)), minVal, {['    X: ' num2str(x(minIndexX(i),minIndexY(i)))];['    Y: ' num2str(y(minIndexX(i),minIndexY(i)))];['    Z: ' num2str(minVal)]})
    hold on
end

2.绘图结果

在这里插入图片描述

3.结论

观察可知,绘图最大值约为60.1051,最小值约为41.3242,与模拟退火算法求解结果基本一致。

模拟退火算法是一种优化算法,用于求解约束二元函数极值问题。在MATLAB中,可以使用以下代码段来实现模拟退火算法求解过程: ```MATLAB function [x_opt, y_opt] = simulated_annealing() % 初始化参数 T = 100; % 初始温度 T_min = 1e-8; % 最小温度 alpha = 0.95; % 退火速率 x = rand(); % 随机生成初始解 y = rand(); x_opt = x; % 最优解 y_opt = y; f_opt = func2(x, y); % 最优目标函数值 % 模拟退火过程 while T > T_min for i = 1:100 % 每个温度下进行100次迭代 x_new = x + (rand() - 0.5) * T; % 生成新解 y_new = y + (rand() - 0.5) * T; f_new = func2(x_new, y_new); % 计算目标函数值 % 判断是否接受新解 if f_new < f_opt x_opt = x_new; y_opt = y_new; f_opt = f_new; else delta_f = f_new - f_opt; p = exp(-delta_f / T); % 计算接受概率 if rand() < p x_opt = x_new; y_opt = y_new; f_opt = f_new; end end end T = T * alpha; % 降低温度 end end ``` 通过以上代码段,可以求解二元函数极值,并得到最优解的x和y值。绘图结果可以使用MATLAB的plot函数来展示,横轴为x,纵轴为y,即可得到函数的图像。根据实际情况,结合具体的问题约束条件,可以得出最终的结论。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [用模拟退火算法求解约束二元函数极值问题之二:用MATLAB绘图验证](https://blog.csdn.net/dai19981003/article/details/115295862)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [MATLAB求解二元函数极值--模拟退火算法](https://blog.csdn.net/Guxue_xue/article/details/117701452)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [MATLAB代码示例,用于建立模型表示物理或工程系统,并使用矩阵代数来描述系统的动态性质(附详细操作步骤)...](https://download.csdn.net/download/weixin_44609920/88237902)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DearMrDerek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值