1 YOLOv8跟踪的配置文件
1.1 botsort.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False # for tracker evaluation(not used for now)
# BoT-SORT settings
gmc_method: sparseOptFlow # method of global motion compensation
# ReID model related thresh (not supported yet)
proximity_thresh: 0.5
appearance_thresh: 0.25
with_reid: False
1.2 bytetrack.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False # for tracker evaluation(not used for now)
2 YOLOv8默认参数配置文件default.yaml
文件路径:.\ultralytics\cfg\default.yaml
default.yaml中有很多训练、测试、预测、可视化等关键参数的设置,具体如下:
-
任务和模式设置:定义YOLO的任务(如检测、分割、分类、姿态识别)和模式(如训练、验证、预测、导出、跟踪、基准测试)。
-
训练设置:包括模型文件路径、数据文件路径、训练轮次、训练时间、早停耐心(无改进的训练轮数)、批次大小、图像大小、是否保存训练检查点和预测结果、缓存设置、运行设备、工作线程数、项目和实验名称、是否允许覆盖现有实验、是否使用预训练模型、优化器类型、是否输出详细信息、随机种子、是否启用确定模式、是否作为单类别训练、是否应用矩形训练或验证、是否使用余弦学习率调度器等。
-
验证/测试设置:包括是否在训练过程中进行验证/测试、用于验证的数据集分割、是否保存结果到JSON文件、置信度阈值、交并比(IoU)阈值、每张图片的最大检测数量等。
-
预测设置:定义了预测源目录、视频帧速率步长、流媒体帧缓存设置、是否可视化模型特征、是否应用图像增强、是否使用类不可知NMS等。
-
可视化设置:设置是否展示预测图像和视频、是否保存预测的视频帧、是否保存结果为.txt文件、是否保存带有置信度分数的结果、是否保存结果裁剪图像、是否展示预测标签、置信度和边框等。
-
导出设置:定义导出格式、是否使用Keras、是否优化TorchScript、INT8量化、动态轴、简化模型等设置。
-
超参数&