【YOLOv8配置文件理解】

本文详细解读了YOLOv8中的两种跟踪配置文件botsort.yaml和bytetrack.yaml,以及默认参数配置文件default.yaml,涉及训练、测试、预测、可视化设置和自定义跟踪器选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 YOLOv8跟踪的配置文件

1.1 botsort.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT

tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10  # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False  # for tracker evaluation(not used for now)

# BoT-SORT settings
gmc_method: sparseOptFlow # method of global motion compensation
# ReID model related thresh (not supported yet)
proximity_thresh: 0.5
appearance_thresh: 0.25
with_reid: False

1.2 bytetrack.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack

tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10  # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False  # for tracker evaluation(not used for now)

2 YOLOv8默认参数配置文件default.yaml

文件路径:.\ultralytics\cfg\default.yaml

default.yaml中有很多训练、测试、预测、可视化等关键参数的设置,具体如下:

  1. 任务和模式设置:定义YOLO的任务(如检测、分割、分类、姿态识别)和模式(如训练、验证、预测、导出、跟踪、基准测试)。

  2. 训练设置:包括模型文件路径、数据文件路径、训练轮次、训练时间、早停耐心(无改进的训练轮数)、批次大小、图像大小、是否保存训练检查点和预测结果、缓存设置、运行设备、工作线程数、项目和实验名称、是否允许覆盖现有实验、是否使用预训练模型、优化器类型、是否输出详细信息、随机种子、是否启用确定模式、是否作为单类别训练、是否应用矩形训练或验证、是否使用余弦学习率调度器等。

  3. 验证/测试设置:包括是否在训练过程中进行验证/测试、用于验证的数据集分割、是否保存结果到JSON文件、置信度阈值、交并比(IoU)阈值、每张图片的最大检测数量等。

  4. 预测设置:定义了预测源目录、视频帧速率步长、流媒体帧缓存设置、是否可视化模型特征、是否应用图像增强、是否使用类不可知NMS等。

  5. 可视化设置:设置是否展示预测图像和视频、是否保存预测的视频帧、是否保存结果为.txt文件、是否保存带有置信度分数的结果、是否保存结果裁剪图像、是否展示预测标签、置信度和边框等。

  6. 导出设置:定义导出格式、是否使用Keras、是否优化TorchScript、INT8量化、动态轴、简化模型等设置。

  7. 超参数&

### 如何修改 YOLOv8 配置文件 YOLOv8 使用 YAML 文件作为配置文件来定义模型架构和其他训练参数。为了修改这些配置文件,可以遵循以下方法: #### 了解配置文件结构 首先需要理解 YOLOv8配置文件通常包含哪些部分。主要组成部分有模型超参数、数据集设置以及优化器选项等。 - **模型超参数**:包括但不限于输入尺寸 (`imgsz`) 和锚框大小 (`anchors`)[^1]。 - **数据集设置**:指定训练和验证的数据路径 (`train`, `val`) 及类别数量 (`nc`)。 - **优化器选项**:如学习率 (`lr0`) 和动量 (`momentum`)。 #### 修改配置文件实例 假设要调整输入图像分辨率并更改批量大小 (batch size),可以在对应的 `.yaml` 文件中找到相应字段进行编辑。下面是一个具体的例子: ```yaml # yolov8.yaml example configuration file snippet train: imgsz: 640 # Training image size, default is 640 pixels batch_size: 16 # Batch size per GPU during training ``` 如果希望将输入图片的高度宽度都设为 416 像素,并且每张显卡上的批处理数增加到 32,则应更新上述片段如下所示: ```yaml # Modified yolov8.yaml with custom settings train: imgsz: 416 # Changed from 640 to 416 for smaller input images batch_size: 32 # Increased batch size from 16 to 32 ``` 对于更复杂的自定义需求,比如改变网络层的数量或类型,可能还需要深入了解官方文档中的说明。 #### 加载与保存修改后的配置 当完成对配置文件的手动编辑之后,可以通过 Python API 来读取新的设定值。例如,在加载一个预训练好的 YOLOv8 模型时,会自动应用最新的配置项: ```python from ultralytics import YOLO model = YOLO('path/to/your_modified/yolov8.yaml') ``` 这段代码将会按照用户所编写的 YAML 文件内容初始化一个新的检测模型对象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值