图像配准在深度学习中的解决方案越来越多,尤其是通过卷积神经网络(CNN)和生成对抗网络(GAN)等方法,可以显著提升图像配准的效果,尤其是在处理复杂的非刚性变换和大范围的图像差异时。
1. 基于深度学习的图像配准方法概述
深度学习方法常用于图像配准中,特别是在需要处理复杂的变换、噪声或大规模数据时。深度学习的方法通常不需要手动提取特征,而是通过神经网络自动学习从源图像到目标图像之间的映射。
2. 深度学习解决图像配准的几种方法
1. 监督学习方法
- CNN-based Registration:利用卷积神经网络(CNN)进行图像配准,通过端到端的训练来学习图像之间的变换关系。网络输入通常是图像对,输出是变换矩阵或位移场。
- 变换学习:这种方法通过 CNN 学习图像之间的全局变换(如仿射变换、透视变换等)。例如,DeepReg 和 VoxelMorph 等框架使用卷积神经网络预测变换矩阵或位移场来对图像进行对齐。
2. 无监督学习方法
- 基于损失函数的图像配准:这种方法通过构建一个无监督损失函数来度量两张图像之间的配准精度,常见的损失函数包括交叉相关损失、均方误差损失(MSE)等。网络通过最小化该损失函数来优化变换过程。
- VoxelMorph:VoxelMorp