DirectX视口变换矩阵详解

视口变换在投影变换之后,视口变换的作用是将投影平面上的点转换为屏幕上的点,这是一个缩放的过程。

投影变换的作用是将viewing frustum(视景体)中的场景投影到一个平面上,这个平面就是投影平面,在DirectX中,使用近剪裁平面作为投影平面(z=1),关于透视投影的矩阵求解,请参考透视投影详解



视口变换则是将这个cuboid中的物体变换到视口中,见下图。


其中cuboid的坐标范围是

 

而viewport的坐标范围是

注:由上图知,视口的起点为(X, Y),宽高分别为Width和Height,x轴向右为正,y轴向下为正,y轴的方向与三维坐标正好相反。视口是一个2D平面,但是在viewport变换中,Z坐标也是跟着变换的,只是在这个图中没有体现。

先求变换矩阵的第一列

Cuboid中的左上角点(-1, 1, 0, 1)映射到viewport中的起点(X, Y, MinZ, 1),

Cuboid中的右上角点(1, 1, 0, 1)映射到viewport中的点(X+Width, Y, MinZ, 1),

假设变换矩阵的第一列为[x’, y’, z’, 1]T据矩阵乘法有

[-1, 1, 0, 1]* [x’, y’, z’, 1]T = X

[1, 1, 0, 1]* [x’, y’, z’, 1]T = X+Width

对应的两个方程为

-1*x’ + 1*y’ + 0*z’ + 1*w’ = X

1*x’ + 1*y’ + 0*z’ + 1*w’ = X+Width

解之得

x’ = Width/2

y’ = 0

z’ = 0

w’ = x + Width/2

再求第二列

列方程(这里省略了x’,z’,但结果不变,下同)

y’ + 1*w’=Y

-1*y’ + 1*w’=Y+Height

解之得

y’ = -Height/2

w’ = Y + Height/2

最后求第三列

列方程

0*z’ + 1*w’ = MinZ

1*z’ + 1*w’ = MaxZ

解之得

z’ = MaxZ – MinZ

w’ = MinZ

组合以上各列,得到视口变换矩阵

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值