视口变换在投影变换之后,视口变换的作用是将投影平面上的点转换为屏幕上的点,这是一个缩放的过程。
投影变换的作用是将viewing frustum(视景体)中的场景投影到一个平面上,这个平面就是投影平面,在DirectX中,使用近剪裁平面作为投影平面(z=1),关于透视投影的矩阵求解,请参考透视投影详解
视口变换则是将这个cuboid中的物体变换到视口中,见下图。
其中cuboid的坐标范围是
而viewport的坐标范围是
注:由上图知,视口的起点为(X, Y),宽高分别为Width和Height,x轴向右为正,y轴向下为正,y轴的方向与三维坐标正好相反。视口是一个2D平面,但是在viewport变换中,Z坐标也是跟着变换的,只是在这个图中没有体现。
先求变换矩阵的第一列
Cuboid中的左上角点(-1, 1, 0, 1)映射到viewport中的起点(X, Y, MinZ, 1),
Cuboid中的右上角点(1, 1, 0, 1)映射到viewport中的点(X+Width, Y, MinZ, 1),
假设变换矩阵的第一列为[x’, y’, z’, 1]T据矩阵乘法有
[-1, 1, 0, 1]* [x’, y’, z’, 1]T = X
[1, 1, 0, 1]* [x’, y’, z’, 1]T = X+Width
对应的两个方程为
-1*x’ + 1*y’ + 0*z’ + 1*w’ = X
1*x’ + 1*y’ + 0*z’ + 1*w’ = X+Width
解之得
x’ = Width/2
y’ = 0
z’ = 0
w’ = x + Width/2
再求第二列
列方程(这里省略了x’,z’,但结果不变,下同)
y’ + 1*w’=Y
-1*y’ + 1*w’=Y+Height
解之得
y’ = -Height/2
w’ = Y + Height/2
最后求第三列
列方程
0*z’ + 1*w’ = MinZ
1*z’ + 1*w’ = MaxZ
解之得
z’ = MaxZ – MinZ
w’ = MinZ
组合以上各列,得到视口变换矩阵