MOTA(Multiple Object Tracking Accuracy)是一种用于评估多目标跟踪性能的指标,它的定义如下:
MOTA 衡量了多目标跟踪算法在跟踪任务中的整体准确性。它通过考虑以下几个因素来评估跟踪算法的性能:
-
False Positives (FP):表示跟踪算法错误地将背景或不存在的目标标记为目标。
-
False Negatives (FN):表示跟踪算法未能检测到真实存在的目标。
-
Identity Switches (IDSw):表示跟踪序列中目标身份的切换次数,即目标在跟踪过程中从一个身份切换到另一个身份。
-
Total Number of Ground Truth Targets:表示跟踪序列中真实存在的目标总数。
MOTA 的计算公式如下
MOTA 分数通常以百分比的形式表示,范围从0%到100%,分数越高表示跟踪算法的性能越好。MOTA 是一个综合性的评估指标,可以帮助衡量跟踪算法在多个方面的性能表现,包括误检、漏检和身份切换等。在多目标跟踪领域,MOTA 是一个常用的性能评价指标之一。