第2周学习:卷积神经网络基础

目录

Part1  视频学习

一.绪论

         1.卷积神经网络的应用

2.传统神经网络vs卷积神经网络

二.基本组成结构

1.卷积

2.池化

3.全连接

三.卷积神经网络典型结构

1.AlexNet

2.ZFNet

3. vGG

4.GoogleNet

5. ResNet

Part2  代码实战

一.MNIST 数据集分类:构建简单的CNN对 mnist 数据集进行分类。同时,还会在实验中学习池化与卷积操作的基本作用

1. 加载数据 (MNIST)

 2. 创建网络

3. 在小型全连接网络上训练(Fully-connected network)

4. 在卷积神经网络上训练

5. 打乱像素顺序再次在两个网络上训练与测试

二.CIFAR10 数据集分类:使用 CNN 对 CIFAR10 数据集进行分类

三.使用 VGG16 对 CIFAR10 分类

本周思考问题:

1、dataloader 里面 shuffle 取不同值有什么区别?

2、transform 里,取了不同值,这个有什么区别?

3、epoch 和 batch 的区别?

4、1x1的卷积和 FC 有什么区别?主要起什么作用?

5、residual leanring 为什么能够提升准确率?

6、代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

7、代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

8、有什么方法可以进一步提升准确率?


Part1  视频学习

一.绪论


1.卷积神经网络的应用

卷积神经网络无处不在,主要应用有:分类、检索、检测、分割

具体的例子:人脸识别、识别遗传病、人脸表情识别、图像生成、图形风格转化、自动驾驶

2.传统神经网络vs卷积神经网络

首先搭建神经网络结构属于深度学习第一部曲:

 全连接网络处理图像的问题:参数太多,权重矩阵参数太多——过拟合。

卷积神经网络解决方式:局部关联、参数共享。

二.基本组成结构


1.卷积

 

 

 可以由输入矩阵以及卷积核的每块对应乘积的和,另外还需加上个b的值,得出卷积核中输出矩阵。

由于步长为1,输出矩阵应为3×3。

 

 由于步长原因,没有办法完全卷完时候,可以在最外围加上一圈0padding,使之全部卷积。

 

 N代表输入矩阵边长,F代表卷积核边长,stride代表

输出特征图大小主要分为有无padding。

2.池化

可以认为是一个缩放的功能。

最大值池化和平均值池化的演示:

3.全连接

三.卷积神经网络典型结构


1.AlexNet

 ReLU函数的优点:

 Dropout:

 数据增强 :

2.ZFNet

3. vGG

4.GoogleNet

计算量会变得很大,再加上pooling的操作,随着模型不断加深,计算复杂度极高。

V2:

V2对其前者的解决方法:利用1×1的卷积核进行深度降维。 

V3对V2进行进一步降低:将5×5的卷积核裂变为3×3的卷积核,利用小卷积核代替大卷积核。

5. ResNet

 成功原因:不会出现由于模型深度很深而产生的梯度消失的问题。

Part2  代码实战

一.MNIST 数据集分类:构建简单的CNN对 mnist 数据集进行分类。同时,还会在实验中学习池化与卷积操作的基本作用

卷积神经网络(CNN)
学习如何使用 PyTorch 进行CNN的训练与测试
我们还会展示池化与卷积操作的作用
深度卷积神经网络中,有如下特性

很多层: compositionality
卷积: locality + stationarity of images
池化: Invariance of object class to translations

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

1. 加载数据 (MNIST)

PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  • root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件
  • train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download,如果设置为True, 从互联网下载数据并放到root文件夹下
  • transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
  • target_transform 一种函数或变换,输入目标,进行变换。

另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

显示数据集中的部分图像

 2. 创建网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数init中。

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x
# 定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

3. 在小型全连接网络上训练(Fully-connected network)

4. 在卷积神经网络上训练

需要注意的是,上在定义的CNN和全连接网络,拥有相同数量的模型参数

 通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过两个手段:

  • 卷积:Locality and stationarity in images
  • 池化:Builds in some translation invariance

5. 打乱像素顺序再次在两个网络上训练与测试

考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样 卷积 和 池化 就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

首先下面代码展示随机打乱像素顺序后,图像的形态:

 重新定义训练与测试函数,我们写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。

与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

在全连接网络上训练与测试:

  

在卷积神经网络上训练与测试:

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

二.CIFAR10 数据集分类:使用 CNN 对 CIFAR10 数据集进行分类

对于视觉数据,PyTorch 创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

首先,加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

大家肯定好奇,下面代码中说的是 0.5,怎么就变化到[-1,1]之间了?PyTorch源码中是这么写的:

input[channel] = (input[channel] - mean[channel]) / std[channel]

这样就是:((0,1)-0.5)/0.5=(-1,1)。

分别进行引入,定义网络,损失函数和优化器,训练网络。

 我们把图片输入模型,可以看到CNN把这些图片识别的时候有一些错误。

 准确率到百分之62,还可以通过改进网络结构,进一步提升性能。

三.使用 VGG16 对 CIFAR10 分类

定义 dataloader时候需要注意的是,这里的 transform,dataloader 和之前定义的有所不同,大家自己体会。

 

可以看到,使用一个简化版的 VGG 网络,就能够显著地将准确率由 64%,提升到 84.92%

本周思考问题:


1、dataloader 里面 shuffle 取不同值有什么区别?

shuffle的意思就是让序列乱序,本质上就是让序列里面的每一个元素等概率分布在序列的任何位置,进行洗牌。

默认设置为False。在每次迭代训练时是否将数据洗牌,默认设置是False,即每次训练混乱的程度保持一致。

true,将输入数据的顺序打乱,是为了使数据更有独立性,使得模型的泛化能力能强。


2、transform 里,取了不同值,这个有什么区别?

常用的数据预处理方法。

此处写的很不错,记录下来Pytorch数据变换(Transform) - HOU_JUN - 博客园 (cnblogs.com)


3、epoch 和 batch 的区别?

Epoch数是一个超参数,它定义了学习算法在整个训练数据集中的工作次数。一个Epoch意味着训练数据集中的每个样本都有机会更新内部模型参数。Epoch由一个或多个Batch组成。

Batch大小是一个超参数,用于定义在更新内部模型参数之前要处理的样本数。将批处理视为循环迭代一个或多个样本并进行预测。在批处理结束时,将预测与预期输出变量进行比较,并计算误差。从该错误中,更新算法用于改进模型,例如沿误差梯度向下移动。训练数据集可以分为一个或多个Batch。


4、1x1的卷积和 FC 有什么区别?主要起什么作用?

在数学本质上一样,都是特征图中的元素乘以权重再求和。

功能上1*1卷积可以减少或增加特征图的层数,全连接无法做到。

用1*1卷积代替全连接应该是基于输入尺寸的考虑,全连接的输入是特征图所有元素乘以权重再求和,但是这个权重向量是在设计网络的时候就需要固定的,所以全连接没办法适应输入尺寸的变化只能固定。通俗来说就是卷积是权值共享。


5、residual leanring 为什么能够提升准确率?

不会出现由于模型深度很深而产生的梯度消失的问题,因此能够提升准确度。


6、代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

LeNet中使用sigmoid函数作为激活函数,练习二中使用ReLu作为激活函数。


7、代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

可以使用填充padding以及使用1*1的卷积的方法来调整feature map的尺寸。


8、有什么方法可以进一步提升准确率?

选择合适的激活函数

使用足够大的数据集

加深网络深度

调整网络结构
 

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值