导读:由于大数据时代的发展,知识呈指数级增长,而知识图谱技术又在近年来逐步火热,因此诞生了利用知识图谱技术进行智能创作的新想法。本文将分享基于知识图谱的多模内容创作技术及应用。主要包括以下四大部分:
-
百度知识图谱概览
-
百度智能创作全景
-
多模内容创作技术
-
落地产品及应用案例
分享嘉宾|卞东海 百度 高级研发工程师
编辑整理|蒋郭鑫 河海大学
出品社区|DataFun
01/百度知识图谱概览
首先介绍一下百度知识图谱的概览。
1. 知识图谱的基本结构
知识图谱以结构化的知识来描述客观世界的概念、实体及其属性和关系。从上图例子中我们可以看到,和梁启超相关的一些概念和关系,比如教育家和政治家是和梁启超相关的一些身份概念,而梁启超和梁思成是父子的关系。
2. 百度知识图谱的发展历程
回顾百度知识图谱在过去十多年的主线工作和发展历程,主要经历了四个阶段:
-
第一个阶段在2013年以前的Pre-KG阶段,这也是学界和业界知识图谱发展的初级阶段,百度的知识图谱立项并开始运用于百度知识搜索的知心产品;
-
第二阶段在2014年至2015年,是知识图谱方法论和架构逐渐成型的阶段,我们建立了垂类的领域知识库,并规模化地应用于搜索的各类产品之中;
-
第三个阶段在2016年至2017年,逐渐地深入建设通用知识图谱相关的架构、算法和机制,开始全面应用于搜索、金融、客服、商业等各类产品线;
-
第四个阶段在2018年以后,这一阶段,技术建设的重点在于多元知识图谱的异构互联、图谱的主动输入和自学习、多媒体知识、复杂知识以及行业知识图谱的理解与构建等。
3. 百度知识图谱的技术视图
上图为百度知识图谱技术视图,首先是知识获取技术,即各种信息抽取的技术;接下来是知识整合技术,用于多元知识的融合;然后是知识补全和扩展的技术,用于不断地丰富知识图谱的内容;知识表示学习、知识推理与计算等认知技术主要运用在搜索、推荐问答等业务当中;最后,收录模型可以持续高效地更新知识。最下面是支撑上面所有知识发现、组织与获取应用能力的架构和平台。
4. 通用知识图谱应用
我们的通用知识图谱目前在百度的核心业务中广泛地应用,比如在搜索业务中支持了智能搜索,可以直接返回问题的答案。在信息流的推荐业务中,基于各类图谱去提升推荐的质量。在DuerOS等智能对话产品上,提供了大量优质的内容。
5. 行业知识图谱应用
我们的行业知识图谱目前赋能了许多行业领域:
-
首先是基于海量专业知识构建的医疗知识图谱,其包含了千万级的医学事实,并开发了基于专业医疗知识的医疗计算认知引擎,在多家三甲医院上线使用;
-
其次是智慧司法,我们完成了标准、精细、体系化的类案知识体系的构建,类案推荐效果显著,在法案实际的使用当中,结案的效率提高了一倍以上;
-
最后是智能客服,我们引入知识图谱,沉淀客服知识和信息资源,通过理解客户的意图,支持客服坐席的知识提示,人工通话的接单量降低了70%。
02/百度智能创作全景
1. 内容创作挑战
创作,是对人类现有知识和素材的组织和再创造。在内容创作领域,像媒体、金融、政企都有大量的创作需求,比如新闻稿件、金融报告、公司公文等。在创作时一般都有以下四个痛点:
-
第一是如何从海量信息中获取到有价值的内容;
-
第二是时效性要足够高,像新闻稿件尤其是热门事件的新闻,肯定是越快越好&#