序言
本文是笔者在学习信号与系统课程后的总结,虽然笔者就读于XDU 全国top3的通信工程专业,但是信号与系统仍然是一块硬骨头,而信号与系统的重要性对于通信工程乃至很多工科不言而喻,人人都知其重要,但是能学好的少之甚少,算上老师能真正理解的又有多少人?老师的讲授往往是长篇大论的数学推导,对于大部分数学直觉不好的同学(包括笔者在内我觉得大部分同学都是这样)很容易产生食之无味的感觉,而且知识点如过眼云烟没有感觉,追其根本还是没有以工程的思维去理解。信号与系统作为一门工程学科,拨开其数学的外衣方能直面灵魂的洗礼。
笔者在学习的过程中有幸拜读到了知乎唐骏老师的信号与系统杂谈受益匪浅,强烈推荐有时间的朋友们去知乎阅读唐老师的信号与系统漫谈五十讲!
https://www.zhihu.com/column/c_1301456161237876736
本文由浅入深,由电路到方程,由方程到响应,由时域到频域,由频域到复频域,用图描绘系统五个视角去看待信号与系统,再结合具体的例题将分析思想进行串讲,希望能够给需要的朋友和同窗提供帮助。本文部分内容也参考了唐骏老师的内容,特此鸣谢!
基础知识
1、KVL定律:对任一闭合回路沿回路绕行方向各段电压的代数和为0
2、KCL定律:I入 = I出
3、电路的串并联分析,电容和电感的特性
4、电路元件的s域模型:
【总览】
信号与系统的核心:
(1)求线性常系数微(差)方程(缩写为LCCd(D)E)描述的LTI系统的单位脉冲响应h(t)和h[n]
(2)求LCCd(D)E描述的LTI系统的频响H(jw)和H(ejw)
(3)求LCCd(D)E描述的LTI系统的系统函数H(s)和H(z)、零极点和收敛域
概括而言:
一个中心:以LTI系统为中心
两条主线:连续时间与离散时间信号与系统
三个层次:时域、频域(傅氏变换)、复频域(拉氏变换和z变换)
在时域上,能以最合适的方式定义系统的特性:记忆性、可逆性、因果性、稳定性、时不变性和线性
在频域上,能以最合适的方式解释系统的特性:频率选择性
在复频域上,能以最合适的方法刻画系统的特性:系统函数、零极点图和收敛域
视角一:由电路到方程
例1:电容电压作为输出量
例2:电容电压作为输出量
例3:电感电流作为输出量
【总结1】
根据电路结构及电路元件特性列写微分方程
(1)选取中间量:若把电容电压作为输出,则选取电感电流作为中间量;若把电感电流作为输出,则选取电容电压作为输出
(2)分别根据电路结构(串并联电流电压关系)和电路元件的特性(电容电感的积分式)列写表达式
(3)联立以上两个方程,得到只含输入输出量(及其k阶导数)的微分方程
【总结2】
信号与系统始终不能离开系统,我们要思考一个根本问题,我们求得的上述输入和输出的显式关系的目的是什么,这门课不是电路分析基础,求解电路视角下的微分方程不是最终目的,而最终的目的依然要归结到系统。而如果费了九牛二虎之力求解出的结果不能很好地理解系统行为,解释系统特性,才有必要去探索新的方法,傅里叶变换和拉氏变换是研究线性常系微分方程描述的连续时间系统的利器,而Z变换是研究线性常系数差分方程描述的离散时间系统的利器。三大变换为方程的求解提供了新的方法,为理解系统行为,解释系统特性提供了新的视角。
视角二:由方程到响应
【思考】
为什么要求解系统的冲激响应?
本质上还是为了描述系统的输入输出之间的关系
以上推导说明了由于δ(t)的独特性质因此可以用 ∫x(τ)δ(t-τ)来表示任何连续信号,所以y(t) = x(t) * h(t)也是一种通过卷积和单位冲激响应来描述系统输入输出关系的方式,与例题一种通过电路列写微分方程是不同的视角。
例1 :求解微分方程的冲激响应
【总结】
如上述例题一和例题二,对于一个RLC电路(线性时不变系统),在时域上分析系统特性(描述输入输出关系)的一般思路就是先根据电路知识列写方程,再根据数学知识求解方程。
有实际意义的系统都会以某种方式将输入改造为输出,这种改造恰好就是系统功能的体现,故而输入输出法(或者激励响应法)是描述系统性质,了解系统功能的最直接的方式,理解系统如何改造输入信号是系统分析的核心。
显然以上从时域理解系统似乎有点隔山打牛无法触及核心,总感觉差点意思,我们继续从频域一探究竟。
视角三:从时域到频域
从频域上研究系统就要从系统函数说起
我们可以把H(s)和H(z)理解为改造输入信号的方式,而谁的功能是将输入改造为输出?是系统!所以H(s)和H(z)是系统函数,也可以用来表征系统的特性。
【发现】
同时观察H(s)和H(z)的表达式发现均与其对应的单位脉冲响应h(t)和h[n]有某种微妙的关系,而我们知道单位脉冲响应h(t)和h[n]与系统函数H(s)和H(z)都可以描述系统的功能,我们大胆猜测:既然h(t)和h[n]是从时域角度下的,那么H(s)和H(z)是不是在(复)频域角度下对系统的描述?事实证明是正确的,H(s)和H(z)恰恰分别是(复)频域角度下的拉氏变换和z变换的表达式!
我们再推导频率响应函数的表达形式
例1:求解频率响应
视角四:从频域到复频域
例1:求解连续时间系统的全响应
【思考1】
为什么y''(t)的拉氏变换s²Y(s) - sy(0-) - y'(0-),为什么y'(t)的拉氏变换就是sY(s) - y'(0-),笔者当时学的时候就很困扰,虽然可以死记硬背但是到底为什么呢?总感觉有些内在的规律唉
【思考2】
为什么最终Y(s)的表达式中s+5/s²+4s+3这一项是零输入响应,而2s+1/s²+4s+3这一项是零状态响应?
Yzi(s):零输入响应(zero input),输入为0时的系统响应(完全由系统内部条件决定),所以输入x(t) = 0, x(t)' = 0, 输入的拉氏变换也为0,即方程的右式为0,此时Y(s) = Yzi(s) = s+5/s²+4s+3
Yzs(s):零状态响应(zero state),系统在零状态时的响应(只与输入有关),因为国内的教材几乎没有对到底什么是零状态进行进一步的解释, 所以这里有必要提一下奥本海姆书籍里面对于零状态的诠释,它指系统内部无能量存储,即初始松弛 initial rest,则y(0-) = 0,y'(0-) = 0,代入原方程可得Y(s) = Yzs(s) = (2s+1/s²+4s+3) * F(s)。
到分析出Yzi(s)和Yzs(s)表达式之后已经可以开始半场开香槟了,剩下的就是因式分解成易于求傅里叶逆变换的分式形式,取傅里叶逆变换求得yzi(t)和yzs(t),全响应即为yz(t) = yzi(t) + yzs(t)
例2:求解离散时间系统的全响应
【思考3】
对于吴大正编写的《信号与系统》书籍我们可能在学习的时候有如下疑问:
(1)为什么教材的编写顺序是先学傅氏变换再学拉氏变换/z变换
(2)为什么重点讲拉氏变换,到z变换的时候同理拉氏变换介绍较少
(3)我在频域分析会用傅里叶变换就可以了,为什么还要学习拉氏变换
(4)为什么傅氏变换的知名度远大于拉氏变换
首先任何新事物新概念的出现绝不是凭空产生,一定是基于某种需求或者某种条件,而拉氏变换(z变换)就是基于傅氏变换这一条件和基于不满足傅氏变换狄利克雷条件的信号无法分析这一需求产生。
从表达式的角度可以发现拉氏变换/z变换是在傅氏变换的基础上加入了一个补偿因子,使之由不满足狄利克雷条件到满足狄利克雷条件(本质是调整收敛域),进而我们可以说傅里叶变换是拉氏变换/z变化的一个特例,拉氏变换/z变换的建立广义上拓展了傅里叶变换的范围。
虽然说傅里叶变换在名气上“青出于蓝而胜于蓝”,但是姜还是老的辣,拉氏变换/z变换在控制领域独占鳌头,其压箱底的功夫是系统函数,拉氏变换与系统函数密不可分。就像学过信号的一定知道傅里叶变换,学过控制自动化理论的一定知道拉氏变换,这才是拉氏变换最广泛的工程应用,而所谓的拉氏变换可以简化微分方程成代数运算只能算是信号视角下拉氏变换应用的bonus罢了。不能成为拉氏变换简化计算这一应用的绝对拥趸,否则只会本末倒置。
前文说到信号与系统离不开系统思维,这也是为什么教材设置拉氏变换后讲授系统函数,所以为了更好地分析系统拉氏变换也要了解。
接下来我们再看看零状态响应和零输入响应,祖师爷奥本海姆的开山教材和国内教材的最大区别就在于对于卷积部分和对于零输入响应和零状态响应的讲解,同时这两部分也是几乎全书数一数二难理解的部分,但也是非常重要的知识点。国内的教材讲解大多是直接进行数学推导,虽然思维严谨,但是缺少引入和过渡,对于数学直觉不那么好(包括笔者在内我觉得大部分同学都是这个情况)的同学隔衣挠痒不达要害,因此下面我主要结合奥本海姆教材的诠释和自己的理解谈谈零状态响应和零输入响应。
首先我们明确一个系统有维持本身稳定的方式(所谓的稳定是指系统内部的能量或者其他条件),同时系统也会受到输入的影响。所以一个系统的输出受输入和 系统本身两部分影响。为了更好地区分于描述,我们将这两部分影响因素分为了零状态和零输入,对应的输出分别称为零状态响应和零输入响应。
零输入响应:输入为0时系统的响应(只由系统内部能量决定)
零状态响应:状态为0时系统的响应(只有系统的输入决定)
在以上的概念解释时我尽量没有用“零输入时系统的响应”来解释零输入响应,这不妥妥听君一席话如听一席话,我用的是“输入为0时系统的响应”来解释,而更为精妙的是括号内的解释“只由系统内部的能量决定”简洁明了规避歧义。
但是在仿照对于零输入响应的解释再到解释零状态响应就有点力不从心了,状态为0???状态又不是数字什么叫做状态为0?为此祖师爷提出了初始松弛的概念,至此,我们知道了初始松弛条件下的响应就是零状态响应,即“在输入变为非0之前,响应一直为0”
为什么叫做初始松弛?我们联想弹簧振子模型(忽略自身重力),在不施加外力的状态下弹簧是处于松弛状态的,此时弹簧振子这个系统储存的能量(弹性势能)为0,我们假设用弹簧来作为弹簧测力计,测力计的读数即为这个系统的输出。“在输入(挂载重物对系统施加的外力)变为非0(即有外力)之前,响应一直为0(测力计的读数一直为0)”
对于零状态响应我们引入了初始松弛的概念帮助理解,但是零输入响应不乐意了,凭什么这不公平我也要,好好好那就安排呗
我们知道,零输入状态只与系统内部的条件决定,但是究竟是什么内部条件,太抽象了,我们用一个例子加以说明。
假设我们在某个时刻给一辆初始静止的汽车(道路绝对光滑不考虑摩擦力)一个推力,在“零时刻”撤出外力,此时满足输入为0,这个时候汽车要减速到停止,在减速的过程中减速方式只与汽车本身内部的传动减速装置有关,输入为0后的响应(也就是汽车的运动状态)仅与汽车系统本身决定。
【总结1】
以上对于零状态响应和零输入响应的理解启示我们万物皆为系统,我们要养成从系统的视角看问题的思维。而所谓的新概念是从生产实践中来再经由抽象概括成的,因为要想对其有更深的理解,不能拘泥于理论和实践,莫忘来时路返璞归真结合实际的例子才更加通俗易懂。
同时与Yzi和Yzs对应的一组概念是自由响应(free response)和受迫(forced response)响应,我们从数学角度来解释这一组概念。
自由响应:依赖于系统本身的特性,微分方程的特征方程根λi称为系统的固有频率,对应着齐次解yh(t) homogeneous solution,不管输入是啥都是这样的
受迫响应:由激励信号决定,对应着特解yp(t) particular solution,随着输入信号的不同是不同的
【总结2】
乍一看自由响应和受迫响应这组概念和Yzi和Yzs有点相似,但是切忌混为一谈,这两组概念没有对应关系,自由响应和受迫响应只是从另一个角度来理解系统的响应的方式 ,就像我们在电路视角下,时域、频域和复频域视角下理解系统一样,都是不同视角下对于同一事物的描述。
而理解零状态响应和零输入响应对于电路元件s域模型很有用,根本不用死记硬背象电压源象电流源的公式,本质上还是我在基础部分提到的额s域模型的公式,我们对其进行重写:
明白所以然很多公式根本不需要死记硬背
视角五:用图描述系统的两种方式
一、系统框图
例1
例2
例3
【总结】
对于系统框图来描述系统是工程中常见的一种方式,其优点是简洁明了,我们要具备根据系统框图写出输出与输出的关系以及系统函数的能力,对于简单单项的系统框图,我们可以直接写出输入与输出之间的关系,而对于前后通路都有的复杂的系统框图,我们选取中间变量作为桥梁来进行方程组的联系进而求解,而中间变量的选取只是为了简化计算,同一个系统框图可以有多种中间变量的选择方式,但是最终得到的系统方程是一样的。
二、信号流图
信号流图是用有向线段描述线性方程组因果关系的一个图。