文章目录
一、原理概述
原始4PCS方法的主要局限性有:(1)它不能很好地处理强变化的点密度;(2)为了保持效率,该算法需要对点云数据必须大量采样,以至于不能保证近似的点对点对应。为了克服这些缺点,KPCS算法选择不对原始点云应用4PCS(随机或定期的下采样版本),而是用独特的3D关键点集(Harris、DoG等)来表示点云,并在关键点集上运行(略微修改)4PCS。简而言之,KPCS相较于原始算法引入了关键点这一思想,并针对原始算法中点云大幅度降采样不合理的问题进行了改善。
二、PCL中的KPCS
类型:pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >,该类继承了原始的PCS算法类型