CloudCompare&PCL KPCS点云粗配准

192 篇文章 1011 订阅 ¥19.90 ¥99.00
本文介绍了KPCS(关键点4PCS)算法在点云配准中的应用,作为对原始4PCS算法的改进,KPCS使用3D关键点集来提高配准效果。在PCL库中,通过类型pcl::registration::KFPCSInitialAlignment实现KPCS。文章详细阐述了KPCS的工作流程,PCL中的实现,并提供了CloudCompare插件开发的步骤,以及实现效果和相关参考资料。
摘要由CSDN通过智能技术生成

一、原理概述

原始4PCS方法的主要局限性有:(1)它不能很好地处理强变化的点密度;(2)为了保持效率,该算法需要对点云数据必须大量采样,以至于不能保证近似的点对点对应。为了克服这些缺点,KPCS算法选择不对原始点云应用4PCS(随机或定期的下采样版本),而是用独特的3D关键点集(Harris、DoG等)来表示点云,并在关键点集上运行(略微修改)4PCS。简而言之,KPCS相较于原始算法引入了关键点这一思想,并针对原始算法中点云大幅度降采样不合理的问题进行了改善。

K4PCS工作流程

二、PCL中的KPCS

类型:pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >,该类继承了原始的PCS算法类型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值