CloudCompare&PCL RANSAC拟合球(随机采样一致性)

192 篇文章 1011 订阅 ¥19.90 ¥99.00
本文介绍了RANSAC(随机采样一致性)算法,用于从点云数据中拟合球面。通过在C++中使用PCL库和CloudCompare,详细阐述了算法的实现代码、效果展示以及小测试。当数据存在大量噪声时,RANSAC的效果会受到影响。
摘要由CSDN通过智能技术生成

一、简介

RANSAC是一种随机参数估计算法,也就先进行假设,之后再进行验证。该方法从样本中随机抽选出一个样本子集,使用最小方差估计算法对这个子集计算模型参数,然后计算所有样本与该模型的偏差,再使用一个预先设定好的阈值与偏差比较,当偏差小于阈值时,该样本点属于模型内样本点(内点),否则就是外样本点(外点)。记录当前的内点的个数,然后重复上述的过程,直到模型中的内点达到最多,那么此时的模型参数即为最佳模型参数。从上述的过程我们不难看出,该方法是一个不断进行采样的过程,这也是其名字的由来:随机采样一致性算法。

更多的内容可以参考之前的文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值