OpenMesh 网格(Mesh)数据简化算法

本文介绍了OpenMesh库中的网格简化算法,通过误差度量和点对收缩策略降低网格复杂度,保持形状特征。算法基于局部简化策略,利用二次型误差定义顶点收缩代价,并详细阐述了计算过程和实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

网格简化算法的目标是在不改变网格基本形状特征的情况下,降低网格的几何复杂度,即将包含大量多边形的网格数据转换为包含相对较少多边形的网格数据。网格简化通常用于构造具有高多边形数对象的细节级表示。大多数算法都试图通过保证网格具有相同的欧拉特性来保持网格的拓扑结构。基于局部简化策略存在两种重要方法,即逐步去除顶点或边缘,直到达到所需的简化水平。一般来说,简化方法会使用一种代价函数来选择最合适的顶点或边的删除,并对顶点或边施加一组约束。

此外,网格简化算法中的误差度量主要是用于指定与移除顶点或边相关的代价,与网格元素相关联的度量也可以考虑在简化操作期间保留网格的形状和拓扑特征。一般来说,误差度量提供了一种网格几何形状中计算偏差的粗略方法。比如OpenMesh中就为我们提供了一种Quadric误差度量,其具体的计算过程如下所述:

不过在真正了解整个过程之前,我们还需要了解Quadric这种误差度量具体是怎么计算的,方便后续的理解应用。

为了在给定的迭代中选择要执行的收缩,我们需要对收缩的代价有一些概念。为了定义这个代价,我们为每个顶点引入一种误差计算。为此&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值