概率论与数理统计教程(一)-随机事件与概率01:随机事件及其运算

本文介绍了概率论与数理统计的基础概念,从随机现象开始,阐述了随机事件、样本空间、事件运算(并、交、差、对立)以及随机变量的概念。举例说明了事件的包含关系、相等关系和互不相容关系,并探讨了事件的运算性质,如交换律、结合律和分配律。文章还提及了事件域和分割的概念,强调它们在简化问题和定义概率的重要性。
摘要由CSDN通过智能技术生成

第一章
随机事件与概率
概率论与数理统计研究的对象是随机现象. 概率论研究随机现象的模型
(即概率分布) 及其性质, 详见前四章,
数理统计研究随机现象的数据收集、处理及统计推断,
详见后四章.下面从随机现象开始逐步叙述这些内容.
§ 1.1 随机事件及其运算
1.1.1 随机现象
在一定的条件下, 并不总是出现相同结果的现象称为随机现象,
如抛一枚硬币与掷一颗骰子.随机现象有两个特点:
(1) 结果不止一个;
(2) 哪一个结果出现, 人们事先并不知道.
只有一个结果的现象称为确定性现象.例如, 太阳从东方升起, 水往低处流,
异性电荷相吸,一个口袋中有十只完全相同的白球, 从中任取一只必然为白球.
例 1.1.1 随机现象的例子.
(1)抛一枚硬币,有可能正面朝上,也有可能反面朝上.
(2) 掷一颗骰子, 出现的点数.
(3) 一天内进人某商场的顾客数.
(4) 某种型号电视机的寿命.
(5) 测量某物理量 (长度、直径等) 的误差.
随机现象到处可见.
对在相同条件下可以重复的随机现象的观察、记录、实验称为随机试验.
也有很多随机现象是不能重复的, 例如某场足球赛的输赢是不能重复的,
某些经济现象 (如失业、经济增长速度等) 也不能重复.
概率论与数理统计主要研究能大量重复的随机现象,但也十分注意研究不能重复的随机现象.
1.1.2 样本空间
随机现象的一切可能基本结果组成的集合称为样本空间,记为
Ω = { ω } \Omega=\{\omega\} Ω={ ω},其中 ω \omega ω 表示基本结果, 又称为样本点.
样本点是今后抽样的最基本单元. 认识随机现象首先要列出它的样本空间.
例 1.1.2 下面给出例 1.1.1 中随机现象的样本空间.
(1)抛一枚硬币的样本空间为
Ω 1 = { ω 1 , ω 2 } \Omega_{1}=\left\{\omega_{1}, \omega_{2}\right\} Ω1={ ω1,ω2}, 其中 ω 1 \omega_{1} ω1
表示正面朝上, ω 2 \omega_{2} ω2 表示反面朝上.
(2) 郑一颗骰子的样本空间为
Ω 2 = { ω 1 , ω 2 , ⋯   , ω 6 } \Omega_{2}=\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{6}\right\} Ω2={ ω1,ω2,,ω6},
其中 ω i \omega_{i} ωi 表示出现 i i i 点, i = 1 i=1 i=1, 2 , ⋯   , 6 2, \cdots, 6 2,,6.
也可更直接明了地记此样本空间为 Ω 2 = { 1 , 2 , ⋯   , 6 } \Omega_{2}=\{1,2, \cdots, 6\} Ω2={ 1,2,,6}.
(3) 一天内进人某商场的顾客数的样本空间为
Ω 3 = { 0 , 1 , 2 , ⋯   , 500 , ⋯   , 1 0 5 , ⋯   } , \Omega_{3}=\left\{0,1,2, \cdots, 500, \cdots, 10^{5}, \cdots\right\}, Ω3={ 0,1,2,,500,,105,},
其中" 0 “表示"一天内无人进人此商场”, 而 " 1 0 5 10^{5} 105 “表示
“一天内有十万人进人此商场”.虽然此两种情况很少发生,
但我们无法说此两种情况不可能发生,
甚至于我们不能确切地说出一天内进人该商场的最多人数,
所以该样本空间用非负整数集表示, 既不脱离实际情况, 又便于数学上的处理.
(4) 电视机寿命的样本空间为 Ω 4 = { t : t ⩾ 0 } \Omega_{4}=\{t: t \geqslant 0\} Ω4={ t:t0}, 其中 t t t
为一台电视机开始工作到首次发生故障的时间间隔.
(5) 测量误差的样本空间为 Ω 5 = { x : − ∞ < x < ∞ } \Omega_{5}=\{x:-\infty<x<\infty\} Ω5={ x:<x<}, 其中 x x x
为测量值 y y y 与真值 μ \mu μ 之间的差, 即 x = y − μ x=y-\mu x=yμ.
需要注意的是:
(1) 样本空间中的元素可以是数也可以不是数.
(2) 随机现象的样本空间至少有两个样本点,
如果将确定性现象放在一起考虑,则含有一个样本点的样本空间对应的为确定性现象.
(3) 从样本空间含有样本点的个数来区分, 样本空间可分为有限与无限两类,
臂如以上样本空间 Ω 1 \Omega_{1} Ω1 Ω 2 \Omega_{2} Ω2 中样本点的个数为有限个, 而
Ω 3 , Ω 4 \Omega_{3}, \Omega_{4} Ω3,Ω4 Ω 5 \Omega_{5} Ω5 中样本点的个数为无限个. 但
Ω 3 \Omega_{3} Ω3 中样本点的个数为可列个, 而 Ω 4 \Omega_{4} Ω4 Ω 5 \Omega_{5} Ω5
中的样本点的个数为不可列无限个. 在以后的数学处理上,
我们往往将样本点的个数为有限个或可列的情况归为一类, 称为离散样本空间.
而将样本点的个数为不可列无限个的情况归为另一类,
称为连续样本空间.由于这两类样本空间有着本质上的差异,故分别称呼之.
1.1.3 随机事件
随机现象的某些样本点组成的集合称为随机事件,简称事件, 常用大写字母
A , B A, B A,B, C , ⋯ C, \cdots C, 表示. 如在掷一颗骰子中, A = A= A= “出现奇数点”
是一个事件, 即 A = { 1 , 3 , 5 } A=\{1,3,5\} A={ 1,3,5}, 它是相应样本空间 Ω = { 1 , 2 , 3 , 4 , 5 , 6 } \Omega=\{1,2,3,4,5,6\} Ω={ 1,2,3,4,5,6}
的一个子集.
在以上事件的定义中, 要注意以下几点:
(1) 任一事件 A A A
是相应样本空间的一个子集.在概率论中常用一个长方形表示样本空间
Ω \Omega Ω,用其中一个圆或其他几何图形表示事件 A A A, 见图 1.1.1,
这类图形称为维恩 (Venn) 图.
(2) 当子集 A A A 中某个样本点出现了, 就说事件 A A A 发生了, 或者说事件 A A A
发生当且仅当 A A A 中某个样本点出现了.
(3)事件可以用集合表示,也可用明白无误的语言外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“174px”}
图 1.1 .1 事件 A A A 的维恩图描述.
(4) 由样本空间 Ω \Omega Ω 中的单个元素组成的子集称为基本事件.而样本空间
Ω \Omega Ω 的最大子集 (即 Ω \Omega Ω 本身) 称为必然事件. 样本空间 Ω \Omega Ω
的最小子集 (即空集 ∅ \varnothing ) 称为不可能事件.
例 1.1.3 掷一颗骰子的样本空间为 Ω = { 1 , 2 , ⋯   , 6 } \Omega=\{1,2, \cdots, 6\} Ω={ 1,2,,6}.
事件 A = A= A= “出现 1 点”, 它由 Ω \Omega Ω 的单个样本点 " 1 " 组成.
事件 B = B= B= “出现偶数点”, 它由 Ω \Omega Ω 的三个样本点 " 2 , 4 , 6 2,4,6 2,4,6 " 组成.
事件 C = C= C= “出现的点数小于 7 “, 它由 Ω \Omega Ω 的全部样本点 "
1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6 " 组成, 即必然事件 Ω \Omega Ω.
事件 D = D= D= “出现的点数大于 6 “, Ω \Omega Ω 中任一样本点都不在 D D D 中, 所以
D D D 是空集, 即不可能事件 ∅ \varnothing .
1.1.4 随机变量
用来表示随机现象结果的变量称为随机变量, 常用大写字母 X , Y , Z X, Y, Z X,Y,Z 表示.
很多事件都可用随机变量表示, 表示时应写明随机变量的含义.
而随机变量的含义是人们按需要设置出来的.下面通过一些例子来说明是如何进行设置的.
例 1.1.4 很多随机现象的结果本身就是数,
把这些数看作某特设变量的取值就可获得随机变量. 如郑一颗骰子, 可能出现
1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6 诸点. 若设置 X = X= X= “郑一颗骰子出现的点数”, 则 1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6
就是随机变量 X X X 的可能取值, 这时
- 事件"出现 3 点” 可用 " X = 3 X=3 X=3 " 表示.
- 事件"出现点数超过 3 点"可用 " X > 3 X>3 X>3 " 表示.
- " X ⩽ 6 X \leqslant 6 X6 " 是必然事件 Ω \Omega Ω.
- " X = 7 X=7 X=7 " 是不可能事件 ∅ \varnothing .
在这个随机现象中, 若再设 Y = Y= Y= “掷一颗骰子 6 点出现的次数”, 则 Y Y Y 是仅取
0 或 1 两个值的随机变量, 这是与 X X X 不同的另一个随机变量.这时
- " Y = 0 Y=0 Y=0 " 表示事件"没有出现 6 点”.
- " Y = 1 Y=1 Y=1 “表示事件"出现 6 点”.
- " Y ⩽ 1 Y \leqslant 1 Y1 " 是必然事件 Ω \Omega Ω.
- " Y ⩾ 2 Y \geqslant 2 Y2 " 是不可能事件 ∅ \varnothing .
上述讨论表明:在同一个随机现象中,不同的设置可获得不同的随机变量,如何设置可按需要进行.
例 1.1.5
有些随机现象的结果虽然不是数,但仍可根据需要设计出有意义的随机变量.如检验一件产品的可能结果有两个:
合格品与不合格品.若我们把注意点放在不合格品上, 则设置 X = X= X=
“检查一件产品所得的不合格品数”, X X X 是仅取 0 与 1 的随机变量, 且 " X = 0 X=0 X=0
“表示事件"出现合格品”; " X = 1 X=1 X=1 " 表示事件"出现不合格品”.
若检查 10 件产品, 其中不合格品数 Y Y Y 是一个随机变量, 它仅可能取
0 , 1 , 2 , ⋯   , 10 0,1,2, \cdots, 10 0,1,2,,10等 11 个值,且
- 事件 “不合格品数不多于 1 件"可用 " Y ⩽ 1 Y \leqslant 1 Y1 " 表示.
- " Y = 0 Y=0 Y=0 " 表示事件"全是合格品”.
- " Y = 10 Y=10 Y=10 " 表示事件"全是不合格品”.
- " Y < 0 Y<0 Y<0 " 是不可能事件 ∅ \varnothing .
- " Y ⩽ 10 Y \leqslant 10 Y10 “是必然事件 Ω \Omega Ω.
由此可见, 随机变量是人们根据研究和需要设置出来的,
若把它用等号或不等号与某些实数联结起来就可以表示很多事件.
这种表示方法形式简洁、含义明确、使用方便.
今后遇到的大量事件都将用随机变量表示,
这里关键在于随机变量的设置要事先说明.
1.1.5 事件间的关系
下面的讨论总是假设在同一个样本空间 Ω \Omega Ω (即同一个随机现象) 中进行.
事件间的关系与集合间的关系一样, 主要有以下几种:
一、包含关系
如果属于 A A A 的样本点必属于 B B B, 则称 A A A 被包含在 B B B 中 (见图 1.1.2),
或称 B B B 包含 A A A,记为 A ⊂ B A \subset B AB, 或 B ⊃ A B \supset A BA.
用概率论的语言说: 事件

  • 25
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值