条件概率的定义:
是指在某事件B发生的条件下,事件A发生的概率,记作P(A | B)
条件概率:设A与B是样本空间中的两事件,若P(B)>0,则在B发生的下A发生的条件概率为P(A | B)= P(AB) / P(B)
P(B):事件B发生的概率
P(AB):事件A,B同时发生的概率=事件A发生的概率事件A的发生下事件B发生的概率=事件B发生的概率事件B的发生下事件B发生的概率
若事件域上A1,A2,…,An,…互不相容且P(B)>0,则有P(U Ai | B)= Sum(P(AB)) / P(B)
证法一:
P(U Ai | B)= P(U (AiB)) / P(B)
因为Ai之间互不相容,于是有(Ai交B) 交 (Aj交B)=空集
又可列可加性得P(U Ai | B)= P(U (AiB)) / P(B)= Sum(P(AB)) / P(B)
证法二:
因为Ai之间互不相容 ,Ai | B与Aj | B互不相容(互不相容的事件在任何条件下都互不相容)
由可列可加性得P(U Ai | B)= P(U (AiB)) / P(B)= Sum(P(AB)) / P(B)
乘法公式:
P(A1A2A3…A(n-1))>0,则P(A1A2A3…An)= P(A1)* P(A1 | A2)* P(A1A2 | A3)… P(An | A1A2A3…A(n-1))
证明
P(A1A2A3…A(n-1))>0推出A1,A2,…,A(n-1)事件概率>0(单个事件发生的概率大于等于它们同时发生的概率)
再由条件概率公式可证明上面结论
全概率公式:
B1,B2,…,Bn不互相容且交为样本空间,
则有P(A)=U P(ABi)
证明
由可列可加性得
P(A)=U P(ABi)= P(U ABi)= P(A(U Bi))=P(A)
B1,B2,…,Bn不互相容且交包含A,
则有P(A)=U P(ABi)
证明
由可列可加性得
P(A)=U P(ABi)= P(U ABi)= P(A(U Bi))=P(AB)
又因为B包含A
于是有P(A)=P(AB)=P(A)
贝叶斯公式:
B1,B2,…,Bn为样本空间的一个分割(隐含了互不相容),若事件Bi、A的概率>0
则有P(Bi | A)=(P(Bi)*P(A | Bi))/Sum(P(Bi)*P(A | Bi))
证明:
P(Bi | A)= P(BiA) / P(A)
条件概率可推P(BiA)= (P(Bi)*P(A | Bi))
全概率可推P(A)= Sum(P(Bi)*P(A | Bi))
P(Bi | A)= P(BiA) / P(A)=(P(Bi)*P(A | Bi))/Sum(P(Bi)*P(A | Bi))
贝叶斯公式也可有全概率公式的第二种写法(B1,B2,…,Bn互不相容且包含A)
(补充:P(A)*P(B | A)= P(B)*P(A | B))