线上赛训练准备

命题分析

这一次的智慧交通组的任务由以往的检测分割换成了OCR任务。OCR任务分为两种文字检测和文字识别,检测需要定位文本位置(类似目标检测),而识别就是识别出图像中的文字,我们这次的比赛任务就是文字识别。

提交:上传训练模型、预测代码及环境库(可选)的zip形式压缩包

Accuracy:模型对每张图片里文字内容的识别准确率,错一个字即为错,按照准确率高低进行排名。

环境安装

解压命令,只需要运行一次!运行过后记得再次注释掉,避免重复解压。

不要重复运行解压PaddleOCR.zip的命令!

每次启动环境的时候都需要重新运行一次下面的pip的命令(只需要运行%cd!pip这几条),因为重新启动环境的时候,需要重新下载一次环境所需要的依赖包。

至此环境安装成功!


%cd /home/aistudio
# 解压命令只需要运行一次
# !unzip /home/aistudio/PaddleOCR.zip -d /home/aistudio
%cd /home/aistudio/PaddleOCR
!pip install -r requirements.txt

解压数据集

我们首先需要解压数据,最好是aistudio中数据最好放在data目录下,因为data目录下空间很大,放在其他地方会导致项目加载变慢。

这里我使用了两个数据集,除了本次比赛的数据集之外还使用了另一个比赛的数据集,目的是融合扩充数据集。

# 解压数据集
# !unzip /home/aistudio/data/data258841/DataForCompetitor.zip -d /home/aistudio/work/
# !unzip /home/aistudio/data/data87746/训练数据集.zip -d /home/aistudio/work/

划分训练集和验证集

import os
import shutil
from sklearn.model_selection import train_test_split
from tqdm import tqdm

# 数据集根目录路径
dataset_path = "/home/aistudio/work/DataForCompetitor"

# 加载标签文件
with open(os.path.join(dataset_path, 'train_label.txt'), 'r', encoding='utf-8') as f:
    lines = f.readlines()

# 获取图像文件名及其对应的标签信息
data = [line.strip().split('\t') for line in lines]

# 获取图像文件路径
image_dir = os.path.join(dataset_path, 'train')
image_files = [item[0] for item in data]

# 获取标签信息
labels = [item[1] for item in data]

# 划分数据集
train_files, val_files, train_labels, val_labels = train_test_split(image_files, labels, test_size=0.1, random_state=42)

# 创建新的目录用于存放训练集和验证集
train_dir = os.path.join(dataset_path, 'train_dataset')
val_dir = os.path.join(dataset_path, 'val_dataset')
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)

# 复制图像文件到新的目录,并显示进度条
print("复制训练集图像文件...")
for src, label in tqdm(zip(train_files, train_labels), total=len(train_files)):
    filename = os.path.basename(src.split("/")[1])
    # print(f"[DEBUG] {filename}")
    dest_file = os.path.join(train_dir, filename)
    shutil.copy(os.path.join(dataset_path, src), dest_file)

print("复制验证集图像文件...")
for src, label in tqdm(zip(val_files, val_labels), total=len(val_files)):
    filename = os.path.basename(src.split("/")[1])
    dest_file = os.path.join(val_dir, filename)
    shutil.copy(os.path.join(dataset_path, src), dest_file)

# 保存新的标签文件
with open(os.path.join(dataset_path, 'train_dataset_labels.txt'), 'w', encoding='utf-8') as f:
    for filename, label in zip(train_files, train_labels):
        f.write(f"{os.path.basename(filename)}\t{label}\n")

with open(os.path.join(dataset_path, 'val_dataset_labels.txt'), 'w', encoding='utf-8') as f:
    for filename, label in zip(val_files, val_labels):
        f.write(f"{os.path.basename(filename)}\t{label}\n")

print("数据集划分完成!")

克隆项目仓库

克隆对应的项目仓库

# !git clone https://github.com/PaddlePaddle/PaddleOCR

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值