一、本文介绍
本文记录的是基于InceptionNeXt的YOLOv12骨干网络改进方法研究。
InceptionNeXt
提出了新颖的Inception 深度卷积
,将大核深度卷积分解为四个并行分支,有效提升计算效率并保持大感受野。将InceptionNeXt
应用到YOLOv12
的骨干网络中,利用其独特的卷积结构,在处理图像时,不仅能快速捕捉到图像的局部细节特征,还能通过大感受野把握图像的整体信息,实现精度与效率的平衡优化 。
本文在YOLOv12
的基础上配置了原论文中inceptionnext_atto
, inceptionnext_tiny
, inceptionnext_small
, inceptionnext_base
, inceptionnext_base_384
五种模型,以满足不同的需求。
专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进