YOLOv12改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

一、本文介绍

本文记录的是基于InceptionNeXt的YOLOv12骨干网络改进方法研究

InceptionNeXt提出了新颖的Inception 深度卷积将大核深度卷积分解为四个并行分支有效提升计算效率并保持大感受野。将InceptionNeXt应用到YOLOv12的骨干网络中,利用其独特的卷积结构,在处理图像时,不仅能快速捕捉到图像的局部细节特征,还能通过大感受野把握图像的整体信息,实现精度与效率的平衡优化 。

本文在YOLOv12的基础上配置了原论文中inceptionnext_atto, inceptionnext_tiny, inceptionnext_small, inceptionnext_base, inceptionnext_base_384五种模型,以满足不同的需求。


专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### 将YOLOv8主干网络替换为MobileNetv3 在目标检测模型中,主干网络的选择对于性能至关重要。为了提高计算效率并保持良好的精度,在YOLOv8框架下采用更轻量级的MobileNetV3作为新的骨干网是一个合理的选择[^1]。 #### 修改配置文件 首先需要调整`yolov8.yaml`中的backbone部分定义来匹配MobileNet v3结构特性: ```yaml # yolov8_custom.yaml nc: 80 # number of classes depth_multiple: 0.33 width_multiple: 0.5 ... backbone: - [Focus, c1=3, c2=16, k=3] - [Conv, c1=16, c2=16, ... ] # Replace with MobileNet V3 layers accordingly. ``` 注意这里仅展示了简化版配置片段;实际操作时应依据官方文档指导完成全部必要参数设置[^2]。 #### 编写自定义Backbone模块 由于预训练权重不兼容问题,建议重新构建适用于YOLO架构下的MobileNetV3类,并确保其输入输出维度原有设计相吻合。可以参考如下Python代码创建相应组件: ```python import torch.nn as nn from torchvision.models.mobilenet import mobilenet_v3_large class CustomMobilenetV3(nn.Module): def __init__(self, pretrained=True): super(CustomMobilenetV3, self).__init__() base_model = mobilenet_v3_large(pretrained=pretrained) # Remove last few fully connected layers to adapt YOLO structure requirements features = list(base_model.features.children()) self.backbone = nn.Sequential(*features[:-1]) def forward(self, x): return self.backbone(x) if __name__ == "__main__": model = CustomMobilenetV3() print(model) ``` 此脚本实现了基于PyTorch库加载mobilenet_v3_large函数生成的基础版本,并移除了不适合直接用于特征提取的部分层以适应YOLO需求[^3]。 #### 训练过程中的挑战 当更换不同类型的卷积神经网络作为探测器的心组成部分时可能会面临一些困难: - **迁移学习效果不佳**: 如果新旧两套体系差异较,则简单复制原模型权值往往难以取得理想成绩; - **超参调优复杂度增加**: 更改基础构件后原有的优化策略未必适用,需投入更多精力探索最佳实践方案; - **硬件资源消耗变化**: 轻量化改进虽然有助于降低功耗提升速度,但也可能导致GPU利用率波动等问题发生[^4]。 通过上述步骤可以在一定程度上实现在YOLOv8基础上引入MobileNetV3的目标,但仍需针对具体应用场景不断测试验证直至满足预期指标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值