求极限中比较常见的等价无穷小的记忆

tanx-x~?
x-sinx~?
tanx-siinx~?

这几个常见的只要记住tanx>x>sinx,以及几个分数: 1 2 \frac 12 21, 1 3 \frac 13 31, 1 6 \frac 16 61

tanx与sinx 差距最大,tanx-sinx等价 1 2 \frac 12 21 x3
x与sinx差距最小,x-sinx等价 1 6 \frac 16 61 x3
tanx与x差距较大,tanx-x等价于 1 3 \frac 13 31 x3

同样的泰勒公式也就可以推出

tanx = x+ 1 3 \frac 13 31x3+o(x3)
sinx = x - 1 6 \frac 16 61x3

再记住x>ln(1+x)
则有x-ln(1+x)~ 1 2 \frac 12 21x2

如果是反三角函数的话则是

arcsinx>x>arctanx

arcsin - x = x - sinx ~ 1 6 \frac 16 61 x3
x - arctanx = tanx - x ~ 1 3 \frac 13 31 x3

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值