高扽数学---第一章一元函数求极限三大方法---洛必达法则,泰勒公式

本文详细介绍了求解一元函数极限的三大方法,重点讲解了洛必达法则的三个条件及其适用场景,泰勒公式的运用,以及等阶无穷小的概念。针对特定函数类型,如ln形式和三角函数,提出了有效的解决策略,并强调了n阶可导情况下泰勒展开式的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1洛必达法则有三个条件:

上下同趋于0或无穷,上下皆可导,最后结果不为0或变化值
在这里插入图片描述

2泰勒公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3常用的等阶无穷小

在这里插入图片描述
使用图像来记忆更为方便,如x比sinx变化快,x-sinx=1/6x的三次方,tanx比x变化更快,tanx-x=1/3x的三次方

4分子分母不出现积分时往往用泰勒可以解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值