使用UMAP进行降维和可视化

本文介绍了如何使用UMAP库在Python中对PalmerPenguins数据集进行降维,通过标准化处理和可视化,展示如何减少高维数据带来的挑战,提升机器学习模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在处理大数据集时,降维是最重要的方面之一,因为它有助于将数据转换为低维,以便我们能够识别一些重要的特征及其属性。它通常用于避免在分析大数据集时产生的维度问题。

当我们在进行数值分析或创建机器学习模型时,处理高维数据可能会很困难。使用高维数据集会导致高方差,并且模型不会被推广。如果我们降低维度,我们可以使机器学习模型更一般化,避免过度拟合。

UMAP是一个开源的Python库,可以帮助可视化降维。

在本文中,我们将探讨UMAP提供的一些功能。

让我们开始…

安装所需的库

我们将首先使用pip安装UMAP库。下面给出的命令可以做到这一点。

!pip install umap-learn

进口所需的库

在这一步中,我们将导入加载数据集和可视化降维所需的库。

import umap
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

加载数据集

对于本文,我们将使用从Github获取的Palmer Penguins数据集。

penguins = pd.read_csv("https://github.com/allisonhorst/palmerpenguins/raw/5b5891f01b52ae26ad8cb9755ec93672f49328a8/data/penguins_size.csv")
penguins.head()

加载数据集后,我们将开始删除空值,并使用UMAP创建一个reducer对象。这个reducer将用于降维,并进一步用于可视化。

penguins = penguins.dropna()
penguins.species_short.value_counts()
reducer = umap.UMAP()
penguin_data = penguins[
[
"culmen_length_mm",
"culmen_depth_mm",
"flipper_length_mm",
"body_mass_g",
]
].values
scaled_penguin_data = StandardScaler().fit_transform(penguin_data)
embedding = reducer.fit_transform(scaled_penguin_data)

降维可视化

在这一步中,我们将降维进行可视化。

plt.scatter(embedding[:, 0], embedding[:, 1], c=[sns.color_palette()[x] for x in penguins.species_short.map({"Adelie":0, "Chinstrap":1, "Gentoo":2})])
plt.gca().set_aspect('equal', 'datalim')
plt.title('UMAP projection of the Penguin dataset', fontsize=24)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jAdYRvGX-1628732161720)(1.png)]

只需要以上几步,我们就可以绘制出降维的图形,也可以尝试使用不同的数据集进行降维并使用UMAP绘图。

作者:Himanshu Sharma

只需要以上几步,我们就可以绘制出降维的图形,也可以尝试使用不同的数据集进行降维并使用UMAP绘图。

作者:Himanshu Sharma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值