万人围观,3分钟用DeepSeek搭建个人知识库(附完整教程)

主要介绍用DeepSeek快速搭建个人知识库,附详细教程。关键词:DeepSeek、知识库、向量、嵌入模型

背景

为什么你需要一个个人知识库?

在日常工作和学习中,我们常常会积累大量的文档、代码、笔记等资料。如果没有一个统一的存储和检索系统,这些资料很容易变得杂乱无章,查找起来费时费力。

别慌,这次我们用DeepSeek快速搭建自己的个人知识库。

主要目的:

  • 集中管理:将所有资料统一存储,避免散落各处。
  • 快速检索:通过智能搜索,快速定位你需要的信息。
  • 高效学习:通过结构化存储,提升学习和工作效率。

本文主要介绍,网页版DeepSeek搭建知识库。

演示效果

  • 插入小视频

搭建知识库

1、下载安装 Cherry Studio

如果存在报错,我将对应的安装包放在了网盘中,可以直接取网盘下载。

无脑安装,比较简单,这里不在赘述。

2、知识库教程

官网支持MacOs版本的,

实现步骤

1、添加对话模型

  • 左下角设置-添加, 如何查找模型名称往下看

  • 复制 deepseek-ai/DeepSeek-R1 添加到对应框自动识别

2、登录/注册「硅基流动」

登录地址:https://cloud.siliconflow.cn/

新用户注册即送2000万Tokens。如果你是新用户不需要购买,直接按照教程操作

3、点击此处,生成API秘钥

跳转到1的地址,一样先登录注册

4、生成并复制 API秘钥

5、配置API秘钥

回到Cherry Studio,配置API秘钥,点击右侧检查,选择对应模型

注意:最好检查一下,要不后边报错连接失败

现在有了R1会话模型,我们需要添加一个嵌入模型。

说明:对话模型和嵌入模型的区别?
  • 对话模型

对话模型就是能和人聊天的模型。

比如你问一个聊天机器人“今天天气怎么样?”它会回答“今天天气很好,适合出门。”它的任务就是根据你的问题,生成一个合适的回答。

  • 嵌入模型

嵌入模型是把文字变成数字向量的模型。这是生成知识库的内核

例子:比如“苹果”这个词,嵌入模型会把它变成一个数字向量,比如 [0.1, 0.2, 0.3]。如果“苹果”和“水果”语义相近,它们的向量也会很接近,比如 [0.1, 0.2, 0.3] 和 [0.12, 0.21, 0.31]。这样,计算机就可以通过向量来理解它们的关系。

6、添加嵌入模型

我们使用免费的BAAI/bge-m3测试使用

添加一个嵌入模型

这个不需要API秘钥。

现在有了我们选择的嵌入模型,接下来创建知识库

7、创建知识库

  • 知识库入口:在 CherryStudio 左侧工具栏,点击知识库图标

  • 添加知识库:点击添加,开始创建知识库;

8、添加文件并向量化

9、添加助手并配置对应模型

  • 新添加一个知识库助手

  • 配置对应模型

10、对话中引用知识库生成回复

11、验证效果

可以看到和本地文档中的内容一样

### DeepSeek 知识库文档及相关资源 关于 DeepSeek 知识库的官方文档和资源通常会提供详细的指南和技术支持,帮助开发者理解如何有效地构建、管理和查询知识图谱。虽然特定于 DeepSeek 的公开资料可能有限,但从一般意义上讲,企业级知识库管理系统往往具备如下特性: #### 构建知识包 这类平台允许用户创建自定义的知识单元或称为“snaps”,这些可以封装应用程序和服务逻辑,适用于桌面端、服务器以及嵌入式设备等多种环境[^3]。 #### 数据管理与集成 对于像 DeepSeek 这样的高级知识库解决方案而言,其核心功能之一就是能够整合来自不同源的数据,并将其转换成结构化的形式以便后续分析使用。这涉及到对企业内部数据资产的理解及外部API接口的支持。 #### AI驱动的企业数据治理 现代知识库还集成了大型语言模型(LLM) 和知识图谱技术来优化企业数据管理流程。通过自然语言处理(NLP),可以从非结构化文本中提取有价值的信息并建立实体间的关系网络;借助机器学习算法,则能自动化完成诸如分类、推荐等任务,提高工作效率的同时降低了工成本[^2]。 ```python # 示例:假设这是用于连接到DeepSeek API的一个简单Python脚本片段 import requests def query_deepseek(knowledge_query): url = "https://api.deepseek.com/v1/query" headers = {"Authorization": "Bearer YOUR_API_KEY"} response = requests.post(url, json={"query": knowledge_query}, headers=headers) return response.json() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值