基于R语言分析决策树和随机森林(1)

决策树和随机森林是机器学习的一个重要内容。今天主要来说说决策树,决策树分为传统的决策树和条件决策树,传统决策树(rpart包实现)主要是基于:基尼不纯度(Gini Impurity)或信息增益(Information Gain)等标准对节点进行递归分割。条件决策树会根据条件分布测量变量与响应值(分类)之间的相关关系,选择分割节点中要使用的变量,可以改善rpart包过度拟合的问题。今天我们主要来聊聊条件决策树,假如你是一个银行的经理,有客户来向你贷款,对于还款能力强(低风险)的客户,你肯定愿意贷款给他,而对于还款能力差(高风险)的客户,你肯定不愿意贷款给他。那么,我们怎么评定对一个客户进行风险评估呢,肯定是基于既往的数据根据他的职业、收入、负债、资产等等做评估,大概就是下图这样做了一个分类的决策,我们的决策树大概就是这样的一个操作原理 ,等于机器算法帮你做了决策。
在这里插入图片描述
我们今天来使用SPSS自带的一个银行1500例客户进行风险划分的数据集,来做一个条件决策树,R语言需要使用到party、caret、pROC、foreign包需要事先下载好
我们先导入数据看下数据结构

library(foreign)
library(pROC)
library(party)
library(caret)
library(ggplot2)
bc <- read.spss("E:/r/test/bankloan_cs.sav",
                use.value.labels=F, to.data.frame=T)

在这里插入图片描述
在这里插入图片描述
前面3项是ID号,后面3项是预测概率和权重,我们先不理他。我们来看看中间的项目指标:Age年龄,ed教育程度,employ在职雇主的年限,address在这个地方住的时间income收入,debtinc债务收入比,creddebt信用卡债务,othdebt其他债务,最后一个default是我们的结局指标,即是否是高风险客户。
其中ed教育程度、default是分类变量,我们要进行转换一下

bc$default<-as.factor(bc$default)
bc$ed<-as.factor(bc$ed)

接下来要把数据分成预测集和验证集(就是一个建模,一个验证),要先设一个种子,这样有可重复性

###建立预测和验证集
sub<-sample(1:nrow(bc),round(nrow(bc)*2/3))
length(sub)
data_train<-bc[sub,]#取2/3的数据做训练集
data_test<-bc[-sub,]#取1/3的数据做测试集
###训练集建立模型
fit<-ctree(default ~age+ed+employ+address+income+debtinc+creddebt+othdebt,
           data=data_train,controls = ctree_control(maxsurrogate = 3))
fit
plot(fit)

得到如下结果,可以看到第一级的分支从debtinc债务收入比是否大于16进行分割
在这里插入图片描述
表不好理解的话看图就容易理解多了,债务比大于16的对工作年限进行了划分,小于6年的就是高风险人群,属于不能贷款类型。
在这里插入图片描述
接下来我们进行交叉验证评估模型的验证能力,先在验证集生成预测模型的概率

ctree.predict = predict(fit,data_test)##验证集生成预测概率
bd<-table(ctree.predict,data_test$default)#以表格形式表示
bd

在这里插入图片描述
我们可以看到预测0还是挺准的,1就差点了,通过混淆矩阵可以计算出AUC和95%CI

confusionMatrix(bd)##通过混淆矩阵来计算AUC

在这里插入图片描述
我们还可以通过treeresponse函数把概率提取出来

tr = treeresponse(fit,newdata =data_test )##利用treeresponse提取概率
be<-do.call(rbind.data.frame,tr)##把列表变成数据框形式
colnames(be)<-c("yes","no")#数据太长,重新命名
roc2<-roc(data_test$default,be$no)##生成验证队列AUC,有人可能要问这里为什么用no,不用yes,其实都是一样的
round(auc(roc2),3)##AUC
round(ci(roc2),3)##95%CI
plot(1-roc2$specificities,roc2$sensitivities,col="red",
     lty=1,lwd=2,type = "l",xlab = "specificities",ylab = "sensitivities")
abline(0,1)
legend(0.7,0.3,c("auc=0.753","ci:0.711-0.759"),lty=c(1),lwd=c(2),col="red",bty = "n")

在这里插入图片描述
和混淆矩阵算出来的AUC差不多,稍微高了一点,我看别人算也是高了一点,个人感觉这样提取概率算出来更加准确,决策树由于随机性导致误差稍高,我们可以通过随机森林来减少误差和优化模型,下节将继续介绍随机森林。
更多精彩文章请关注公众号:零基础说科研
在这里插入图片描述

  • 2
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值