CHARLS数据库系列教程(5)---亚组分析,P for trend,P for interaction

CHARLS 是一项具备中国大陆 45 岁及以上人群代表性的追踪调查,旨在建设一个高质量的公共微观数据库,采集的信息涵盖社会经济状况和健康状况等多维度的信息,以满足老龄科学研究的需要。
为利用国际上最佳的数据采集方式,并确保研究结果的国际可比性CHARLS 参照包括美国的健康与退休研究(HRS)在内的系列国际老龄调查研究开展调查设计。其全国基线调查于 2011-12 年进行,于 2013 年、2015 年、2018 年和 2020 年分别开展了 4 轮常规问卷的追踪调查,并于 2014 年完成了中国中老年人生命历程调查。为确保样本的代表性,CHARLS 基线调查覆盖了全国 150 个国家/地区、450 个村庄/城市社区,涉及 10,257户家庭的 17,708 人,反映了中国中老年人群的总体情况。2019 年底到 2020 年初,新冠疫情在中国爆发,为及时记录新冠疫情对中国中老年人生活和健康的影响,在 2020 年的第 5 轮调查中增加采集了疫情相关的信息。

在这里插入图片描述
在上一篇文章《CHARLS数据库系列教程(4)–多模型效应分析、Per SD、P for trend及限制立方样条图绘制》中,咱们以文章《Association Between Triglyceride Glucose Index and Risk of New-Onset Diabetes Among Chinese Adults: Findings From the China Health and Retirement Longitudinal Study》为例子,介绍了文章的核心表格就是文章的表三的制作,以及文章中限制立方样条图的绘制。
今天咱们继续介绍:亚组分析,P for trend,P for interaction,就是下面这个表格的制作。本章结束后这篇文章就已经全部复现,今后可能会介绍一下其他的charls数据的文章复现或者指标生成。

在这里插入图片描述
这个表格的制作其实再之前的文章《新版生存分析亚组交互效应函数(P for interaction)newscitb5 1.8版本发布–用于一键生成交互效应表》我已经大概介绍了怎么绘制这种表格了,这里重新介绍一下,咱们先看下文章中作者调整了什么协变量,

在这里插入图片描述
调整了年龄、性别、教育程度、婚姻、吸烟、饮酒、体重指数、腰围、收缩压、高血压病史、心血管疾病史和降脂药物,我们看下亚组变量是不在协变量里面的,和我以前讲的完全一样,就是协变量中要删除亚组本身的那个变量。

下面开始演示,咱们先导入数据

setwd("E:/公众号文章2024年/charls数据库/class5") #设置你放数据文件的地址

library(haven)
library(tidyverse)
library(survival)
bc<-read.csv("data.final.csv",sep=',',header=TRUE)
dput(names(bc))

在这里插入图片描述

全部文章内容请参看下面这篇文章:

CHARLS数据库系列教程(5)—亚组分析,P for trend,P for interaction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值