R语言复现:中国Charls数据库一篇现况调查论文的缺失数据填补方法

本文介绍了如何在CHARLS数据库的研究中处理缺失值,通过多重填补法和logistic回归分析,发现中高身体活动能降低城市老年人的衰弱风险。R语言复现提供了数据处理和分析的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编者

在临床研究中,数据缺失是不可避免的,甚至没有缺失,数据的真实性都会受到质疑。

那我们该如何应对缺失的数据?放着不管?还是重新开始?不妨试着对缺失值进行填补,简单又高效。毕竟对于统计师来说,对缺失值进行填补也是日常工作之一。

今天为大家带来一篇CHARLS数据库有关缺失值填补的文章复现,包括全部的代码与处理好的数据一并提供给诸位!

复现文章介绍

今天要介绍的文章是发表在《中国慢性病预防与控制》(IF=2.18),题为:“中国城市老年人身体活动与衰弱的相关性研究” 的研究论文。研究结果显示,中高身体活动有助于降低城市老年人的衰弱风险,应对城市老年人开展衰弱筛查,并重视身体活动在降低衰弱风险中的作用,积极引导城市老年人进行身体活动。

743f8ef4710376d24664aace09c16e40.png

本公众号回复“立春”即可获得“立春”临床统计学沙龙PPT,数据等资料

1. 研究设计 

P(Population)参与者:CHARLS2018年城市样本中 60~95岁的老年人。

E(exposure)暴露因素:身体活动水平(PA)。(1周身体活动量(MET-min/周)=对应身体活动的代谢当量(MET)×每天活动时间(min)×1 周活动天数(d);低水平身体活动 MET 赋值为 3.3,中水平身体活动赋值为4.0,高水平身体活动赋值为 8.0;将<600 MET-min/周划分为低水平身体活动,≥600 MET-min/周划分为中高水平身体活动。)

O(outcome)结局:是否衰弱(FI)。(FI 的计算方法为存在健康缺陷的指标数目除以纳入总数,范围为 0~1;本研究将衰弱定义为 FI≥0.25。)              

2. 统计学方法

利用多重填补法对缺失数据进行填补,疾病维度的使用前一期调查数据,使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值