SPSS计算患者的生存率

该博客介绍了如何使用SPSS进行生存分析,特别是计算乳腺癌患者3年或5年的生存率。通过KM方法(Kaplan-Meier)展示了比较淋巴结肿大和未肿大患者生存率的步骤,包括设置分析选项、选择统计检验、生成生存函数图,并提供了事件分析表和生存率计算。最终,结果显示两者生存率存在显著差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生存率是我们生存分析的重要结果。后台有粉丝问我如何使用SPSS计算患者3年或5年的生存率,SPSS计算患者生存率还是比较简单的,有两种方法可以计算,我们一一来演示。继续使用我们的乳腺癌数据(公众号回复:乳腺癌可以获得数据),首先把数据导入
在这里插入图片描述
我们来看一下数据
age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,er表示雌激素受体状态,pr表示孕激素受体状态,status结局事件是否死亡,pathscat表示病理肿瘤大小类别(分组变量),ln_yesno表示是否有淋巴结肿大,time是生存时间,后面的agec是我们自己设定的,不用管它。
导入数据后,
假设我们想比较淋巴结肿大和没有淋巴结肿大患者5年的生存率有无区别?

我们依次点击
分析----生存分析—KM方法
在这里插入图片描述
在对话框中依次填入各选项
在这里插入图片描述
比较因子中选择轶检验
在这里插入图片描述
保存这里都选上
在这里插入图片描述
选项这里勾选生存分析函数图
在这里插入图片描述
最后点击确定就可以了,我们来看看结果,先看事件分析表
在这里插入图片描述
在这里插入图片描述
注意上面是没有淋巴结肿大的表,还有淋巴结肿大的表
在这里插入图片描述
在这里插入图片描述
根据上表我们可以轻易得出生存率各种数据,也可以得出生存函数图
在这里插入图片描述
在这里插入图片描述
通过轶检验得出有无淋巴结肿大生存率存在差异
在这里插入图片描述
另一种方法:
我们重新回到界面
在这里插入图片描述
我们只要算出60个月内的死亡人数,然后除以总人数就可以得出死亡率和生存率
点击
分析—对个案计数
在这里插入图片描述
然后填好你需要的时间截点
在这里插入图片描述
生成S1变量后对它进行统计就可以了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由此可以知道,60个月内死亡59例,除以1207,死亡率为4.89%,生存率为95.11%,这里要注意一下,我这里算的是总死亡率,如果是单项的话要分开来计算。
在这里插入图片描述

<think>好的,我现在需要在SPSS计算两个变量之间的协方差矩阵或者协方差值。之前学过一点SPSS的基础操作,但协方差相关的部分可能不太熟悉。首先,我应该回忆一下协方差的基本概念。协方差是衡量两个变量变化趋势相似程度的统计量,正值表示同向变化,负值相反,而绝对值大小则反映关联强度。这和方差不同,方差只衡量单个变量的离散程度。 现在用户的问题是具体如何在SPSS中操作。我需要回忆SPSS的菜单结构。通常统计分析功能在“分析”菜单下。可能是在相关分析或者描述统计里面?比如,计算相关系数一般用双变量相关,但协方差可能属于类似的地方,或者需要其他步骤。 根据之前的知识,SPSS计算协方差矩阵可能需要用到“协方差”这个分析选项。可能需要进入“分析” -> “相关” -> “双变量”,然后在弹出的对话框中,选择变量,然后勾选协方差的选项。或者有没有单独的协方差分析功能? 另外,协方差矩阵和相关系数矩阵不同,协方差矩阵显示的是变量间的协方差值,而相关系数矩阵是标准化的协方差。所以用户可能需要明确是否需要协方差矩阵还是相关系数矩阵。但问题明确要求协方差,所以需要正确选择。 可能步骤:进入分析菜单,选择相关,然后双变量相关,然后在弹出的窗口里,把变量选进去,然后在选项中勾选协方差。不过,或者是否有其他专门的协方差计算步骤? 另外,是否存在另一个路径,比如使用“一般线性模型”中的协方差分析?不过协方差分析(ANCOVA)通常用于控制协变量对因变量的影响,可能不是直接计算协方差矩阵的地方。所以可能需要分开处理。 再想想,协方差矩阵的计算属于描述性统计的一种,可能位于“分析”->“描述统计”->“描述”或者“交叉表”里?或者可能是在“分析”->“一般线性模型”下的某个选项? 或者另一种方法,通过计算变量的离均差乘积,然后求平均,但这手动计算比较麻烦,SPSS应该有直接的方法。 查一下参考资料中的引用,比如引用[2]提到协方差矩阵一定是方阵,而PCA中需要用到。这可能提示在因子分析或者主成分分析的过程中,SPSS会自动计算协方差矩阵,但用户可能只需要两个变量的协方差,而不是整个矩阵。 或者,用户可能需要通过回归分析或者其他多变量分析来间接得到协方差? 或许正确的步骤是: 1. 打开SPSS,载入数据文件。 2. 转到“分析” -> “相关” -> “双变量”。 3. 在弹出的对话框中,将需要计算协方差的两个变量选入右侧的变量列表。 4. 取消勾选默认的“Pearson相关系数”(如果需要的话,但协方差和相关系数可以同时输出)。 5. 勾选“协方差”选项。 6. 点击确定,运行分析。 这样输出的结果中会包含协方差矩阵。例如,如果选择变量X和Y,那么输出表格中的非对角线元素就是它们的协方差值,对角线是各自的方差。 不过,可能需要验证这个步骤是否正确。例如,在SPSS的双变量相关分析中,是否确实有协方差的选项?或者是否在“双变量”相关设置里,或者是否在“偏相关”或其他选项中? 如果用户在双变量相关中没有找到协方差的选项,可能需要使用其他方法。比如,可能需要在“分析” -> “描述统计” -> “交叉表”中的统计选项里寻找协方差?或者可能使用“回归”中的某些统计量? 或者,可能正确的路径是使用“分析” -> “一般线性模型” -> “多变量”,然后在选项中勾选协方差矩阵的输出。不过,这可能更适用于多变量方差分析的情况,而用户只是需要两个变量的协方差。 另一个可能性是使用语法命令。例如,在语法窗口中输入: CORRELATIONS /VARIABLES=var1 var2 /PRINT=COV. 或者类似的命令。但用户可能更倾向于使用菜单操作。 如果以上的步骤正确,那么用户应该能在输出结果中找到协方差矩阵。例如,结果表格中,协方差矩阵的对角线是各个变量的方差,而其他位置则是变量间的协方差。 此外,用户可能需要知道如何解读结果。协方差的值没有标准化,所以难以直接比较大小,而相关系数则标准化到-1到1之间。因此,协方差的数值大小受变量单位影响,而相关系数不受影响。 总结步骤: 1. 打开数据文件。 2. 点击“分析” -> “相关” -> “双变量”。 3. 选择变量到变量框。 4. 在选项中勾选“协方差”。 5. 确定运行,查看输出。 如果遇到问题,可能需要检查SPSS版本,不同版本菜单可能略有不同。此外,如果用户需要整个数据集的协方差矩阵,可能需要将所有变量选入,而不仅两个变量。此时,输出的矩阵会包含所有变量之间的协方差。 因此,用户的问题是如何计算两个变量之间的协方差矩阵或值。按照上述步骤,应该可以得到所需结果。同时,可能需要提醒用户协方差与相关系数的区别,以及如何根据需求选择适当的统计量。 最后,根据用户提供的引用资料,例如引用[2]提到的协方差矩阵在PCA中的应用,可能需要协方差矩阵作为中间步骤,但SPSS中的操作步骤应如上述。确保回答正确,并验证步骤是否正确。可能还需要参考SPSS官方文档或可靠教程来确认步骤无误。</think>在SPSS计算两个变量之间的协方差矩阵或协方差值,可通过以下步骤实现: ### 步骤说明 1. **导入数据** 打开SPSS并加载包含目标变量的数据集。 2. **进入协方差分析功能** 依次点击菜单栏: `分析(Analyze)` → `相关(Correlate)` → `双变量(Bivariate)` 3. **选择变量** 在弹出的对话框中,将需要计算协方差的两个变量从左侧列表移至右侧“变量(Variables)”框中。 4. **勾选协方差选项** 在对话框右下方勾选“协方差(Covariances)”。若需同时计算相关系数,可保留默认勾选的“Pearson相关系数”。 5. **运行分析** 点击“确定(OK)”,SPSS将输出协方差矩阵及相关系数矩阵(若勾选)。 ### 结果解读 - **协方差矩阵**:对角线值为变量的方差,非对角线值为变量间的协方差。例如,变量$X$与$Y$的协方差位于对应行列交叉处。 - **协方差值的意义**:正值表示两变量同向变化,负值表示反向变化,绝对值大小反映关联强度(但受量纲影响)[^2]。 ### 示例输出 若变量为$X$和$Y$,输出表格可能如下: | | X | Y | |----------|---------|---------| | **X** | 12.5 | 8.3 | | **Y** | 8.3 | 15.2 | - $X$的方差为$12.5$,$Y$的方差为$15.2$,两者的协方差为$8.3$。 --- ### 相关问题 1. 协方差与相关系数的区别是什么? 2. 如何在SPSS计算多个变量的协方差矩阵? 3. 协方差矩阵在主成分分析(PCA)中的作用是什么?[^2] --- 以上步骤通过SPSS的“双变量相关”功能实现协方差计算,适用于探索变量间的线性关系,且结果与协方差矩阵的数学定义一致[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值