YOLO目标检测,训练自己的数据集(识别海参)

640?wx_fmt=gif

向AI转型的程序员都关注了这个号👇👇👇

大数据挖掘DT机器学习  公众号: datayx

这篇文章是训练YOLO v2过程中的经验总结,我使用YOLO v2训练一组自己的数据,训练后的model,在阈值为.25的情况下,Recall值是95.54%,Precision 是97.27%。 

需要注意的是,这一训练过程可能只对我自己的训练集有效,因为我是根据我这一训练集的特征来对YOLO代码进行修改,可能对你的数据集并不适用,所以仅供参考。 

我的数据集 批量改名首先准备好自己的数据集,最好固定格式,此处以VOC为例,采用jpg格式的图像,在名字上最好使用像VOC一样类似000001.jpg、000002.jpg这样。可参照下面示例python代码

640?wx_fmt=png

读取某文件夹下的所有图像然后统一命名,用了opencv所以顺便还可以改格式。 

640?wx_fmt=png

这里面用到的文件夹是Annotation、ImageSets和JPEGImages。其中文件夹Annotation中主要存放xml文件,每一个xml对应一张图像,并且每个xml中存放的是标记的各个目标的位置和类别信息,命名通常与对应的原始图像一样;而ImageSets我们只需要用到Main文件夹,这里面存放的是一些文本文件,通常为train.txt、test.txt等,该文本文件里面的内容是需要用来训练或测试的图像的名字(无后缀无路径);JPEGImages文件夹中放我们已按统一规则命名好的原始图像。 

图像标注

640?wx_fmt=png

代码篇幅有限

请查看原文

https://blog.csdn.net/xiao__run/article/details/78714659

640?wx_fmt=png

接下来我们把标注文件改成.XML 文件才能训练,不多说直接上代码

640?wx_fmt=png

       

640?wx_fmt=png

用YOLOv2训练

640?wx_fmt=png

这里包含了类别和对应归一化后的位置(i guess,如有错请指正)。同时在scripts\下应该也生成了train_2007.txt这个文件,里面包含了所有训练样本的绝对路径。 

640?wx_fmt=png

代码篇幅有限

请查看原文

https://blog.csdn.net/xiao__run/article/details/78714659

也可参考https://blog.csdn.net/shangpapa3/article/details/77483324

Keras 实战 YOLO v3 目标检测图文教程

运行步骤

1.从 YOLO 官网下载 YOLOv3 权重

wget https://pjreddie.com/media/files/yolov3.weights

下载过程如图:

640?wx_fmt=jpeg

2.转换 Darknet YOLO 模型为 Keras 模型

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

转换过程如图:

640?wx_fmt=jpeg

640?wx_fmt=jpeg

3.运行YOLO 目标检测

python yolo.py

需要下载一个图片,然后输入图片的名称,如图所示:

640?wx_fmt=jpeg

我并没有使用经典的那张图,随便从网上找了一个,来源见图片水印:

640?wx_fmt=jpeg

识别效果:

640?wx_fmt=jpeg

项目地址:https://github.com/qqwweee/keras-yolo3

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

640?wx_fmt=jpeg

长按图片,识别二维码,点关注

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值