首先,明确一个概念,什么是有符号数,什么是无符号数。以整型为例,int 类型的既可以表示正整数,又可以表示负整数,所以是有符号数。unsigned int 只可以表示正整数,所以成类似的数为无符号数。在计算机表示中,无符号数的所有位数都表示该数的大小。有符号数的最高位表示正负,0表示正1表示负。例如,
无符号数 1111 1111 表示的数为十进制 255
有符号数 0111 1111 表示的数为十进制127
在编程中,我们不会刻意把无符号对象赋一个负数,但是实际中,很容易写出这样的代码。先看下面的程序:
#include <iostream>
using namespace std;
int main()
{
int i = -42;
unsigned u = 10;
cout << i + i << endl;
cout << u + u << endl;
cout << i + u << endl;
}
第一、二个输出语句分别是 -84 ,20是没问题的,但是,第三个输出语句是-32吗?显然不是!是4294967264,这是为什么呢?
实际上,在一个算数表达式中既有无符号数又有有符号数,那个有符号数(本例中是 int )就会变成无符号数,-42 就会变成无符号数。把负数转成无符号数,结果等于这个负数加上无符号数的模。什么意思呢?在 VS2013编译器中(int 类型变量占4个字节),2的32次方 = 4294967296,那个-42 变成无符号数为 4294967254,再加上10,结果就是我们看到的 4294967264。如下图。
那么,两个无符号数相减呢?看下面几行代码:
#include <iostream>
using namespace std;
int main()
{
unsigned u1 = 10, u2 = 42;
cout << u2 - u1 << endl;
cout << u1 - u2 << endl;
return 0;
}
输出结果如下:
在C++ 中,一个无符号数减去一个值,无论这个值是不是无符号数,都要保证得到的结果不能出现负数。如果是负数,就要加上无符号数的模。本例中,-32 + 4294967296 = 4294967264.
肯定有人很费解。其实弄懂计算机存储数据的机制,就没问题了。下面介绍原码、补码和反码
原码:一个整数,按照绝对值的大小以二进制的形式表示出来,最高位为符号位(0表示整数,1表示负数)
反码:将原码按位取反(最高位除外)。显然,正数的补码等于原码。
补码 : 将反码最低位加1即为补码
有人更费解了,为什么要使用补码呢。其实补码的优势非常明显:
(1)、负数的补码与对应正数的补码之间的转换可以用同一种方法-求补运算完成,可以简化硬件。
(2)、可将减法变为加法,这样减法就可以用加法器进行计算了。
(3)、两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
最后,给大家提供一个大神求补码算法,快速求补码
从最低位开始至找到的第一个1均不变,符号位不变,这之间的各位“求反”(0变1;1变0)。
比如,原码:1010 1001 补码:1101 0111