matlab求解器区别

MATLAB中变步长模式的解法器包括ode45、ode23、ode113和ode15s等,适用于不同类型的微分方程问题,特别是刚性和非刚性问题。ode45作为默认解法器,适用于大多数情况;ode15s针对刚性问题;ode23s和ode23tb针对特定刚性问题。固定步长模式的解法器如ode4、ode3则适用于特定精度和连续状态的系统。用户可根据误差要求和系统特性选择合适的解法器。
摘要由CSDN通过智能技术生成
在工程实践中,我们经常遇到一些ODEs, 其中某些解变换缓慢,另一些变化很快,且相差悬殊的微分方程,这就是所谓的刚性问题(Stiff), 对于所有解的变化相当我们则称为非刚性问题(Nonstiff)。
变步长模式解法器有:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb和discrete。

a) ode45:缺省值,四/五阶龙格-库塔法,适用于大多数连续或离散系统,但不适用于刚性(stiff)系统。它是单步解法器,也就是,在计算y(tn)时,它仅需要最近处理时刻的结果y(tn-1)。一般来说,面对一个仿真问题最好是首先试试ode45。
b) ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比ode45更有效。也是一个单步解法器。
c) ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。
d) ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用ode15s。
e) ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能解决某些ode15s所不能有效解决的stiff问题。
f) ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需要一个无数字振荡的解法器的情况。
g)ode23tb:是TR-BDF2的一种实现, TR-BDF2 是具有两个阶段的隐式龙格-库塔公式。 
h)discrtet:当Simulink检查到模型没有连续状态时使用它。
固定步长模式解法器有:ode5,ode4,ode3,ode2,ode1和discrete。
a) ode5:缺省值,是ode45的固定步长版本,适用于大多数连续或离散系统,不适用于刚性系统。
b) ode4:四阶龙格-库塔法,具有一定的计算精度。
c) ode3:固定步长的二/三阶龙格-库塔法。
d) ode2:改进的欧拉法。
e) ode1:欧拉法。
f) discrete:是一个实现积分的固定步长解法器,它适合于离散无连续状态的系统。

2-3

函数指令
  
  
    
求解器
  
Solver
ode23
普通 2-3 阶法解 ODE
odefile
包含 ODE 的文件
ode23s
低阶法解刚性 ODE
选项
odeset
创建、更改 Solver 选项
ode23t
解适度刚性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值