1. 满足Stochastic Admissible (S.A.)条件等价于
满足S.A.
换句话说有公式
等价于
上诉公式的用处:当把控制器考虑进来时,即时,左边的普通形式会出现
,这会导致
不能在一起,从而导致求解的困难;如果这时考虑右边的形式,就会有
,这时
在一起了,可以将其看作一个整体,在化为LMI形式的时候很有用处。
2.为什么条件,其中
可以替代1.中的左侧式子?
解释:整体将看作新的
,上诉条件意思为
,若要达成S.A.的条件,还需证明
,此时将
,
代入后可以发现:
,所以条件
的条件也达成,综上可以解释问题2。
3.根据条件1所说的等价于
,条件2的等价形式表示如下:
上诉公式的用处:当把控制器考虑进来时同样也是很有用的化MI为LMI的方法。
4.定理条件中何时出现,何时出现
,其中
,
?
解释:本人认为其实都可以,只是分析证明的时候每个人的逻辑不同,如果想出现,那么此条定理证明中就不要出现
;同时,如果想出现
,那么此条定理就不用出现
。
分析两种论文的逻辑思路:
①Ⅰ 对unforced系统分析,证其S.A.,用的前者的条件
Ⅱ 对forced系统分析,求解增益的同时证S.A.,用的后者的条件
②Ⅰ直接对forced系统分析,证其S.A.,用的后者的条件
Ⅱ继续对force系统分析,求解并继续用后者的条件
5.实对称矩阵不一定是正定矩阵,如;
但是在实数域上正定矩阵一定是对称矩阵。