对奇异系统的一些见解

文章探讨了StochasticAdmissible条件在考虑控制器时的等价性,强调了将左侧形式转化为右侧形式在化简为LMI时的优势。同时提到两种论文分析方法,一种针对不同系统的证明策略,以及正定矩阵的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. pair(E,A)满足Stochastic Admissible (S.A.)条件等价于pair(E^T,A^T)满足S.A.

换句话说有公式

\left\{\begin{matrix} E^TP=P^TE\ge0\\ P^TA+A^TP<0 \end{matrix}\right.等价于\left\{\begin{matrix} EP=P^TE^T\ge0\\ P^TA^T+AP<0 \end{matrix}\right.

上诉公式的用处:当把控制器考虑进来时,即\tilde{A}=A+BK时,左边的普通形式会出现P^T\tilde{A}=P^TA+P^TBK,这会导致PK不能在一起,从而导致求解的困难;如果这时考虑右边的形式,就会有P^T\tilde{A}^T=P^TA^T+P^TK^TB^T,这时PK在一起了,可以将其看作一个整体,在化为LMI形式的时候很有用处。

2.为什么条件(PE+SQ)^TA+A^T(PE+SQ)<0,其中E^TS=0, P>0可以替代1.中的左侧式子?

解释:整体将PE+SQ看作新的\mathcal{P}=PE+SQ,上诉条件意思为\mathcal{P}^TA+A^T\mathcal{P}<0,若要达成S.A.的条件,还需证明E^T\mathcal{P}=\mathcal{P}^TE\ge0,此时将\mathcal{P}=PE+SQE^TS=0, P>0代入后可以发现:E^T\mathcal{P}=\mathcal{P}^TE=E^TPE\ge0,所以条件E^T\mathcal{P}=\mathcal{P}^TE\ge0的条件也达成,综上可以解释问题2。

3.根据条件1所说的\left\{\begin{matrix} E^TP=P^TE\ge0\\ P^TA+A^TP<0 \end{matrix}\right.等价于\left\{\begin{matrix} EP=P^TE^T\ge0\\ P^TA^T+AP<0 \end{matrix}\right.,条件2的等价形式表示如下:

(PE+SQ)^TA+A^T(PE+SQ)<0\equiv (PE+SQ)^TA^T+A(PE+SQ)<0

上诉公式的用处:当把控制器考虑进来时同样也是很有用的化MI为LMI的方法。

4.定理条件中何时出现\left\{\begin{matrix} E^TP=P^TE\ge0\\ P^TA+A^TP<0 \end{matrix}\right.,何时出现\mathcal{P}^TA+A^T\mathcal{P}<0,其中\mathcal{P}=PE+SQE^TS=0, P>0

解释:本人认为其实都可以,只是分析证明的时候每个人的逻辑不同,如果想出现\left\{\begin{matrix} E^TP=P^TE\ge0\\ P^TA+A^TP<0 \end{matrix}\right.,那么此条定理证明中就不要出现\mathcal{P}=PE+SQ;同时,如果想出现\mathcal{P}^TA+A^T\mathcal{P}<0,那么此条定理就不用出现E^TP=P^TE\ge0

分析两种论文的逻辑思路:

①Ⅰ 对unforced系统分析,证其S.A.,用的前者的条件

   Ⅱ 对forced系统分析,求解增益的同时证S.A.,用的后者的条件

②Ⅰ直接对forced系统分析,证其S.A.,用的后者的条件

   Ⅱ继续对force系统分析,求解并继续用后者的条件

5.实对称矩阵不一定是正定矩阵,如\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix};

但是在实数域上正定矩阵一定是对称矩阵。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值